Overview of CalPlug Research

Joy Pixley, Research Director
Katie Gladych, Project Manager
Michael Klopfer, Technical Director

CalPlug Workshop
April 21, 2020

www.calplug.org
Established to study plug load devices and energy
- Plug loads = what happens when we let people move into our EE buildings
- Energy efficiency, TOU, DR

Plug loads present specific challenges
- Devices with small kWh that add up
- Variability across devices
- Users matter
- Intersection of technology and user behavior

Multidisciplinary approach
- Engineering, social science, computer science
- Technology and program road-mapping
- Independent testing, evaluation, modeling, developing prototypes and methods
- Field tests, surveys, experiments, programs
Why Plug Loads?

- Evolving category with growth expected across many types
 - number of devices
 - proportion of energy waste

Residential electricity consumption by end use, 2015
percent of total

- air conditioning 17%
- space heating 15%
- water heating 14%
- refrigerators 7%
- lighting 10%
- TVs and related 7%
- clothes dryers 5%
- previously published end uses
- new end uses
- not elsewhere classified 13%

Energy Information Administration (EIA)
Residential Buildings
Why Plug Loads?

- Increasing electricity consumption intensity

Energy Information Administration (EIA) Projections 2018 – 2050
Commercial Buildings
CalPlug Approach, with Examples

- Joy Pixley
 - Selected past projects
 - Commercial plug load devices and EE programs (ComEd)

- Katie Gladych
 - Connected residential devices and EE assessment (SDG&E)

- Michael Klopfer (tomorrow)
 - Future of plug loads
Determine possible states for each device

Test power for all states of each device

Develop a set of use profiles for each device, including
standard test profile

- Active use time
- Pattern of use
- Power management

Use PLSim tool to calculate energy use for each profile

Analysis:

- Range of outcomes: size, and direction vs. the standard profile
- Amount of variation attributed to use, pattern, or PM
Range of Energy Use Across Device Use Profiles

Expected energy consumption higher than standard testing

- Highest profile
- Lowest profile
- Standard
Percent of Variance in Energy Usage Due to Active Use, Pattern, and Power Management

![Bar chart showing energy usage percentages for various devices.](chart)

* = $p < .05$

- **Power management problems**
 - Dire consequences for disabled PM
 - Limited PM options
 - PM not enabled by default
 - Low-power modes not low
 - Long idle opportunities
Changing User Behavior

➢ Behavioral Interventions in Residential Energy Consumption
 ➢ Extensive literature review, systematic search using multiple sources
 ➢ Content-coded 1470+ abstracts and 204 full-text articles and reports
 ➢ Assess the theoretical foundations and empirical validation of various behavioral intervention strategies
 ➢ Investment behaviors
 ➢ Conservation behaviors
 ➢ Load shifting

➢ Energy Channel
 ➢ Smart meter data → TV app and mobile app
 ➢ User feedback gives actionable information about energy use
 ➢ Historical & social comparison
 ➢ EE, adapt to TOU
Desktop computers and power management

- Problem: Prior research indicated that existing low-power modes on desktops are not being efficiently employed by users.
- Studies 1 and 2: Survey of computer users + monitoring study observing their computers =

Finding: Low rates of sleep setting engagement, high levels of confusion among users.
Power Management User Interface

➢ Study 3: PMUI

➢ Design and test new user interface software to facilitate and encourage engagement of power management options.

➢ Field test with 407 staff desktops, 75% treatment group, one month baseline measures, two month treatment period

➢ Results

➢ Initial enabling rate = 14%

➢ Treatment group significantly more likely to enable sleep than control group (59% v. 14%)

➢ “Idle time” effective way to communicate energy waste

➢ Remote access; misuse of APS, controlled outlets
Emerging Technology

 ➢ Future trends in plug and process loads
 ➢ Plug load devices and ZNE building goals
 ➢ Energy impacts of connected bulbs, IoT, cloud computing
 ➢ Home healthcare and medical devices

➢ Modeling and testing power management
 ➢ Device energy use with Tier 2 APS
 ➢ Motion sensors to control set-top boxes, put computers to sleep
 ➢ External “smart” management of standard projectors
Control Strategies and Plug Load Devices

- **Individual solutions**
 - Tier 1 APS
 - Tier 2 APS (occupancy sensor)
 - Smart plugs with timers

- **Smart Buildings**
 - Built-in controlled outlets
 - Centralized control, settings
 - Local occupancy sensors

- **IoT Technology**
 - Integrating sensor data
 - Enhanced automation, control processes
 - Real time data analytics
 - Enhancing building flexibility

Challenge:
Many plug load devices do not respond effectively to power cuts
New Project: Plug Load EE Program Analysis

➢ Provide guidance on future programs that help reduce commercial plug load energy consumption

➢ Review existing programs, third-party evaluation reports, databases, and the academic literature

➢ Identify promising
 ➢ devices
 ➢ utility programs
 ➢ program approaches
Traditional End Use EE Programs

Fig 1. Electricity Savings for Com Ed Commercial EE Programs, by Measure Category

Fig 2. Electricity Usage by End Use Category for Com Ed Commercial Accounts

Source: Navigant Consulting, 2019
<table>
<thead>
<tr>
<th>Category</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional end use</td>
<td>HVAC, Lighting, Water heating, Major Appliance</td>
</tr>
<tr>
<td>Plug load</td>
<td>Electronics, e.g.,</td>
</tr>
<tr>
<td></td>
<td>• computer, display, peripherals, networking, server</td>
</tr>
<tr>
<td></td>
<td>• Imaging (copier, receipt printers)</td>
</tr>
<tr>
<td></td>
<td>• audio visual equipment</td>
</tr>
<tr>
<td></td>
<td>• money exchange (credit card readers, scanners)</td>
</tr>
<tr>
<td></td>
<td>• telephony</td>
</tr>
<tr>
<td></td>
<td>Other equipment, e.g.,</td>
</tr>
<tr>
<td></td>
<td>• business equipment (e.g., shredder, cash drawer)</td>
</tr>
<tr>
<td></td>
<td>• portable HVAC units (e.g., space heaters)</td>
</tr>
<tr>
<td></td>
<td>• portable lighting</td>
</tr>
<tr>
<td></td>
<td>• kitchen equipment, electric housewares</td>
</tr>
<tr>
<td></td>
<td>• power (e.g., uninterruptible power supply)</td>
</tr>
<tr>
<td></td>
<td>• medical equipment</td>
</tr>
<tr>
<td></td>
<td>• vending machines</td>
</tr>
<tr>
<td>Hard-wired loads</td>
<td>Escalators, elevators, security systems, fire detectors</td>
</tr>
</tbody>
</table>
- Assess and select devices, including plug load control systems
- Compare programs across utilities
- Device \rightarrow programs
- Program \rightarrow devices
- Recommendation categories:
 - Add device to existing program
 - Modify existing program
 - Add program addressing device(s)
Early Results

➢ ComEd boasts a very comprehensive program portfolio

➢ Promising avenues:
 ➢ Individual device incentives
 ➢ Adding devices to company/unit-level programs
 ➢ Power management for computers
 ➢ Office equipment and control systems
 ➢ Communication, education
Next: Our Latest Findings

Presenting Katie Gladych!
EE and DR Program Opportunities in Connected Plug Load Devices (SDG&E)

Project Goals:

- Provide insight into under-researched connected devices
- Assess potential energy savings for connectivity in residential plug loads
- Make relevant EE and DR program recommendations

Graph:

Global Smart Home Market, 2016-2022 (USD Billion)

- **2016:** 24.10 USD Billion
- **2017:** USD Billion
- **2018:** USD Billion
- **2019:** USD Billion
- **2020:** USD Billion
- **2021:** 53.45 USD Billion
- **2022:** USD Billion

Source: Zion Research Analysis 2017
Approach

1. Initial Device List
2. Device Selection (Flowchart)
3. Device Characterization/Energy Savings Mechanisms
4. Deep Dives
5. TRC Calculation (and development of new TRC tool)
6. Results
7. Connectivity Discussion: EE & DR
Initial Device List and Selection

Significant Residential Plug Loads → Device OR System → Evaluation for:
1. Connectivity
2. Market Trends
3. Program Savings Potential

APS with controlled devices

Device with onboard energy management
Evaluation for:

1. **Connectivity**
2. **Market Trends**
3. **Program Savings Potential**

Flowchart:
- **Point A:**
 - Does the device have potential claimable EE savings relevant to connectivity?
 - Does the device have potential claimable DR/TOU savings relevant to connectivity?
 - Are there relevant savings measures or programs available for DR/TOU?
 - Are there relevant savings measures or programs available for EE?
 - If yes to Point A:
 - Yes: Device is a priority major scope for the EE section
 - Yes: Device is a priority major scope for the DR/TOU section
 - No: Go back to Point A
 - If no to Point A:
 - Go back to Point A

- **Point B:**
 - Does the device have potential claimable EE savings relevant to connectivity?
 - Does the device have potential claimable DR/TOU savings relevant to connectivity?
 - Are there background performance or effectiveness evaluations for DR/TOU?
 - Are there background performance or effectiveness evaluations for EE?
 - If yes to Point B:
 - Yes: Device is a priority major scope for the EE section
 - Yes: Device is a priority major scope for the DR/TOU section
 - No: Go back to Point B
 - If no to Point B:
 - Go back to Point B

- **Point C:**
 - Does the device have potential claimable EE savings relevant to connectivity?
 - Does the device have potential claimable DR/TOU savings relevant to connectivity?
 - Are there relevant savings measures or programs available for DR/TOU?
 - Are there relevant savings measures or programs available for EE?
 - If yes to Point C:
 - Yes: Device is a priority major scope for the EE section
 - Yes: Device is a priority major scope for the DR/TOU section
 - No: Go back to Point B
 - If no to Point C:
 - Go back to Point C

Additional Notes:
- No IDSM strategy for energy savings potential using an external control device
- No IDSM strategy for energy savings potential using a non-connected device
- Run device through non-connected flowchart, for minor scope consideration

CalPlugs:
- CalIFornia Plug Load Research Center
CalPlug Connectivity Classification

<table>
<thead>
<tr>
<th>Connectivity Class</th>
<th>Class Identification</th>
<th>Class Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Non-Connected (Null Case)</td>
<td>Power management w/out connectivity</td>
</tr>
<tr>
<td>1</td>
<td>Reporting Only</td>
<td>Energy usage reporting; manual DR notifications</td>
</tr>
<tr>
<td>2</td>
<td>Real Time Monitoring w/Control</td>
<td>Connectivity class 1 + ability to adjust settings remotely</td>
</tr>
<tr>
<td>3</td>
<td>Demand Response (Automated)</td>
<td>Remote triggering for DR actions</td>
</tr>
<tr>
<td>4</td>
<td>Network-Based Device Management</td>
<td>Remote/cloud capability to control or fine tune device operation</td>
</tr>
<tr>
<td>5</td>
<td>Network-Based Management w/ Edge Computing Control</td>
<td>Connectivity class 4 + capability of local (edge) processing</td>
</tr>
</tbody>
</table>
Assessing Cost Effectiveness

➢ TRC = Total Resource Cost

➢ Problem: Insufficient data

➢ Solution: We created a new assessment tool for modified TRC calculation
 ➢ Simplifies and streamlines the variables
 ➢ Allows a range of inputs to reflect uncertain data
 ➢ Produces reasonable program performance bounds to assess cost-effectiveness
Simplified TRC Calculation

Equation:

\[
TRC = \frac{Benefit}{Cost} = \frac{UAC_t + TC_t}{PRC_t + PCN + UIC_t}
\]

Cost Effectiveness = TRC > 1

<table>
<thead>
<tr>
<th>Variables</th>
<th>Definition of Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefits</td>
<td></td>
</tr>
<tr>
<td>UAC<sub>t</sub></td>
<td>Utility avoided supply costs in year t (Energy savings)</td>
</tr>
<tr>
<td>TC<sub>t</sub></td>
<td>Tax credits in year t</td>
</tr>
<tr>
<td>Costs</td>
<td></td>
</tr>
<tr>
<td>PRC<sub>t</sub></td>
<td>Program Administrator program costs in year t</td>
</tr>
<tr>
<td>PCN</td>
<td>Net Participant Costs</td>
</tr>
<tr>
<td>UIC<sub>t</sub></td>
<td>Utility increased supply costs in year t</td>
</tr>
</tbody>
</table>
Results: Devices/Systems (EE)

<table>
<thead>
<tr>
<th>Device/System</th>
<th>CA Work Paper</th>
<th>Energy Star Specific Product Category</th>
<th>Modeled lifetime (yr)</th>
<th>Model Max TRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected Refrigerator (v. non-connected)</td>
<td>✓</td>
<td>✓</td>
<td>14</td>
<td>0.05</td>
</tr>
<tr>
<td>Class 1,2,3,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connected Washing Machine (v. non-connected)</td>
<td>X</td>
<td>X</td>
<td>11-15</td>
<td>0.62</td>
</tr>
<tr>
<td>Class 1,2,3,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable Speed Pool Pump (v. 2-speed)</td>
<td>X</td>
<td>✓</td>
<td>9-11</td>
<td>5.71</td>
</tr>
<tr>
<td>Class 1,2,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smart Plug with Window AC Unit (v. without smart plug)</td>
<td>X</td>
<td>X</td>
<td>3-5</td>
<td>1.6</td>
</tr>
<tr>
<td>Class 1,2,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smart Plug with Hot Water Dispenser (v. without smart plug)</td>
<td>X</td>
<td>X</td>
<td>3-5</td>
<td>0.97</td>
</tr>
<tr>
<td>Class 1,2,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tier 2 APS with AV/Entertainment (v. without APS)</td>
<td>✓</td>
<td>X</td>
<td>3-5</td>
<td>1.6</td>
</tr>
<tr>
<td>Class 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example TRC Calculation – Tier 2 APS Comparison

Non-Connected vs. Connected Tier 2 APS

Connected

Non-Connected

TRC

Unit Installed Base (Devices)

Non-Connected Tier 2 APS Unit Energy Net Savings (234 kWh/yr)

Connected Tier 2 APS Unit Energy Net Savings (240 kWh/yr)
So Does Connectivity Save Energy?

- Comparison between connected and non-connected Tier 2 APS shows almost identical hardware, software, and functionality
 - Connectivity adds user monitoring features, but no real extended EE
 - Connectivity features lead to only about 6 kWh/year additional savings per field trial results

- Similar findings for other devices:
 - Washing machines
 - Refrigerators
 - VSD pool pumps
 - Smart plugs
Technical Considerations of Connectivity

Role of Connectivity and Decision Space
Assessing value, accuracy, and actionability

Human in the loop (HIL) control
Summarized user feedback in a convenient user interface improves both usage efficiency and reduction of wasteful use estimated at 2-6% savings in many cases.

Automatic and Coordinated Control
More parameters and potentially more stable decision space. Often logical rules: What added benefit can coordination, AI, or connectivity add?
Energy Efficiency and Connectivity: Discussion

➢ Current status of EE with Connectivity
 ➢ Limited CA work completed to current date
 ➢ Need further device field tests

➢ Limited EE connectivity opportunities for plug load appliances
 ➢ Role of user interfaces and device interaction, expanding actionability and decision space
 ➢ Connectivity enabling operation towards Human-in-the-Loop/User behavior

➢ Extended considerations
 ➢ Costs/overhead of connectivity
 ➢ Integration into IoT systems/SHEMS
Connectivity and DR: Results

<table>
<thead>
<tr>
<th>Device</th>
<th>Shift period duration (ENERGY STAR)</th>
<th>Shift savings (261 periods/yr) kWh/yr</th>
<th>Shed period duration (ENERGY STAR)</th>
<th>Shed savings (261 periods/yr) kWh/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected Refrigerator</td>
<td>4 hr</td>
<td>15.97</td>
<td>10 min</td>
<td>1.53 kWh/yr</td>
</tr>
<tr>
<td>Connected Washing Machine</td>
<td>4 hr</td>
<td>15.40 (at 100%)</td>
<td>10 min</td>
<td>1.55 kWh/yr (at 100%)</td>
</tr>
<tr>
<td>VSD Pool Pump</td>
<td>4 hr</td>
<td>63.20</td>
<td>20 min</td>
<td>8.10 kWh/yr</td>
</tr>
</tbody>
</table>
Connectivity and DR: Discussion

- ENERGY STAR Smart Connected Devices category largely is focused on DR action.

- AutoDR relies on connectivity for control

- Load shift/shed limited for plug load devices
 - User experience

- DR solutions better suited to major appliances than smaller plug loads
 - Larger peak loads to shed
 - Physical control limits
Summary

➢ Connectivity offers limited EE savings in plug load devices
 ➢ IoT systems in future may address this challenge

➢ Connectivity offers limited DR savings in plug loads
 ➢ Potential for Human-in-the-Loop

➢ Recommendation: Continued collaboration between utilities, DOE/ENERGY STAR program, and manufacturers to improve EE standards and DR protocols for plug loads
Thank you!

CalPlug Team Presenters:
Joy Pixley, Katie Gladych, Michael Klopfer