

Perspectives

What Have We Done?

- 1974 Warren-Alquist Act in California
 - Established California Energy Commission (CEC)
- 1975 Energy Policy and Conservation Act
 - U.S. Department of Energy's Appliance and Equipment Standards Program was authorized by Congress

What Are We Doing Now?

 2006 – CA's Global Warming Solutions Act

- 2013 Climate Action Plan by President Obama
 - Reducing carbon pollution by 3 billion metric tons cumulatively by 2030 through energy conservation standards

Challenge: CA emits 424 Million Metric Tons of CO₂ A year*

2017 GHG Emissions by Main Economic Sector

[Image: CA Air Resources Board]

SCE's Clean Power & Electrification Pathway

Pillars of Decarbonization

Building electrification is a cost-effective approach to meeting California's GHG reduction goals

- SCE's Clean Power Pathway (November 2017) identifies electrification of space and water heating as a cost-effective component of an economy-wide approach to meet California's goals.
- E3's "Deep Decarbonization in a High Renewables Future" (May 2018) identifies heat pumps in the loading order of cost effective GHG abatement measures.
- E3's "Residential Building Electrification in California" (April 2019) shows customer cost savings with electrification.

How do we achieve the benefits of building decarbonization without negatively impacting the grid?

High electrification of residential buildings is expected to improve the grid load factor without exacerbating the peak*

- Slightly lower summer peak due to greater cooling efficiency with HVAC heat pump vs. A/C compressor
- Increased winter demand remains below summer peak demand levels under Typical Meteorological Year (TMY) weather conditions modeled
- Electrification contributes to a better utilization of the bulk power grid, as residential building load factor increases from 19% in 2018 to 26% in 2050
- · Localized impacts at regional and distribution-level need to be further studied

Appropriate TOU rates can encourage customers to use flexible water heating schedules

^{*}Assumes water heater runs at minimal power during the peak TOU hours and shifts the water heating to off-peak TOU hours

- Customer bill savings of flexible water heating are highest under the SCE TOU-4-9 rate structure due to the large TOU differentiation (\$0.12/kWh) in winter.
- Flexible water heating schedules generate little bill savings under PG&E and SMUD TOU rates, given the small difference (<\$0.04/kWh) between on-peak and off-peak
- New rate designs that encourage the use of flexible water heating would have larger differences in TOU periods, particularly in winter when water heating demands are higher.

Challenges and Opportunities

GHG Emissions per Fuel Type

[Source: California ISO, http://www.caiso.com/TodaysOutlook/Pages/Emissions.aspx]

Grid is getting greener... with a challenge: curtailment

Perspective: Curtailment

[Source: http://www.caiso.com/informed/Pages/ManagingOversupply.aspx]

Values

Grid Value - Locational Net Benefit Analysis

Location-specific avoided electric grid cost to represent what the utility would have procured in the absence of Distributed Energy Resources.

Emissions Value – Integrated Resource Plan

"Umbrella" planning proceeding to consider all electric procurement policies and programs. To ensure CA has a safe, reliable, and cost-effective electricity supply.

Current TOU Structure (Summer)

Opportunity – Flexible Loads

Integrate Technologies...

Make Non-Flexible Loads Flexible... and Communicate with Grid

Flexible Loads

Non-Flexible Loads

Customer's Load Management

Link Buildings to Grid

All Electric Buildings — Just a Concept?

Not At All... It's already started

Cities Are Considering All Electrics

City of Alameda
Arcata
Atherton
Belmont
Berkeley
Brisbane
Burlingame
Campbell
Carlsbad
Chula-Vista
Cloverdale
Colma
Culver City

Cupertino

Davis

Emeryville **Fairfax** Fresno Gilroy Hayward Healdsburg Hillsborough Los Altos Los Altos Hills City of Los Angeles/LADWP County of Los Angeles Madera **Marin County** Menlo Park Millbrae

Milpitas Morgan Hill **Mountain View** Oakland **Pacifica** Palo Alto Petaluma Portola Valley **Redwood City** Sacramento San Diego San Francisco San Jose (via NBI) City of San Luis Obispo City of San Mateo

San Mateo County Santa Clara County Santa Cruz Santa Monica Santa Rosa **SMUD** Sebastopol Sonoma Clean Power Sonoma County Stockton Sunnyvale SVCE/PCE University of CA (UCOP) West Hollywood Windsor

Woodside

Thank You!