Overview of CalPlug Research

Joy Pixley, Research Director Katie Gladych, Project Manager Michael Klopfer, Technical Director

CalPlug Workshop April 21, 2020

California Plug Load Research Center

- Established to study plug load devices and energy
 - Plug loads = what happens when we let people move into our EE buildings
 - Energy efficiency, TOU, DR

Plug loads present specific challenges

- Devices with small kWh that add up
- Variability across devices
- Users matter
- Intersection of technology and user behavior
- Multidisciplinary approach
 - Engineering, social science, computer science
 - > Technology and program road-mapping
 - Independent testing, evaluation, modeling, developing prototypes and methods
 - Field tests, surveys, experiments, programs Creating Connections. Powering Innovation. Boosting Efficiency.

CallT2 Building, UCI

Why Plug Loads?

Evolving category with growth expected across many types

- > number of devices
- > proportion of energy waste

CALIFORNIA PLUG LOAD RESEARCH CENTER

Why Plug Loads?

Purchased electricity consumption intensity (Reference case) Increasing electricity kilowatthours per square foot consumption intensity other uses computers/office equip. refrigeration 2018 space cooling 2050 ventilation lighting space heating cooking water heating **Energy Information Administration** (EIA) Projections 2018 – 2050 0 2 6 4 **Commercial Buildings**

CalPlug Approach, with Examples

Joy Pixley

- Selected past projects
- Commercial plug load devices and EE programs (ComEd)

Katie Gladych

Connected residential devices and EE assessment (SDG&E)

Michael Klopfer (tomorrow)

Future of plug loads

CALIFORNIA PLUG LOAD RESEARCH CENTER

How Does Usage Matter? Device Use Profile Approach (SIM Home)

- Determine possible states for each device
- Test power for all states of each device
- Develop a set of use profiles for each device, including standard test profile
 - Active use time
 - Pattern of use
 - Power management

Use <u>PLSim tool</u> to calculate energy use for each profile

> Analysis:

- > Range of outcomes: size, and direction v. the standard profile
- Amount of variation attributed to use, pattern, or PM

Range of Energy Use Across Device Use Profiles

CALIFORNIA PLUG LOAD RESEARCH CENTER

Percent of Variance in Energy Usage Due to Active Use, Pattern, and Power Management

Power management problems

Dire consequences for disabled PM

- Limited PM options
- PM not enabled by default

Creating Connections. Powering Innovation. Boosting Efficiency.

Low-power modes not lowLong idle opportunities

Changing User Behavior

Behavioral Interventions in Residential Energy Consumption

- > Extensive literature review, systematic search using multiple sources
- Content-coded 1470+ abstracts and 204 full-text articles and reports
- Assess the theoretical foundations and empirical validation of various behavioral intervention strategies
 - Investment behaviors
 - Conservation behaviors
 - Load shifting

Energy Channel

- Smart meter data → TV app and mobile app
- User feedback gives actionable information about energy use
- > Historical & social comparison
- EE, adapt to TOU

Creating Connections. Powering Innovation. Boosting Efficiency.

CALIFORNIA PLUG LOAD RESEARCH CENTER

The Other Energy Saving Behavior: Settings

Desktop computers and power management

- Problem: Prior research indicated that existing low-power modes on desktops are not being efficiently employed by users.
- Studies 1 and 2: Survey of computer users + monitoring study observing their computers =

Are Computer Sleep Settings Enabled?

Finding: Low rates of sleep setting engagement, high levels of confusion among users.

Power Management User Interface

Study 3: PMUI

- Design and test new user interface software to facilitate and encourage engagement of power management options.
- Field test with 407 staff desktops, 75% treatment group, one month baseline measures, two month treatment period

PMUI

Results

- Initial enabling rate =14%
- Treatment group significantly more likely to enable sleep than control group (59% v. 14%)
- "Idle time" effective way to communicate energy waste
- Remote access; misuse of APS, controlled outlets

Emerging Technology

- Report: "Technology Roadmap towards 2030 and Beyond: Miscellaneous Electrical Loads and Mitigation Strategies in the Era of Zero Net Energy"
 - Future trends in plug and process loads
 - Plug load devices and ZNE building goals
 - Energy impacts of connected bulbs, IoT, cloud computing
 - Home healthcare and medical devices

- Modeling and testing power management
 - Device energy use with Tier 2 APS
 - Motion sensors to control set-top boxes, put computers to sleep
 - External "smart" management of standard projectors

Control Strategies and Plug Load Devices

Individual solutions

- Tier 1 APS
- Tier 2 APS (occupancy sensor)
- Smart plugs with timers
- Smart Buildings
 - Built-in controlled outlets
 - Centralized control, settings
 - Local occupancy sensors

IoT Technology

- Integrating sensor data
- Enhanced automation, control processes
- Real time data analytics
- Enhancing building flexibility

Creating Connections. Powering Innovation. Boosting Efficiency.

Challenge: Many plug load devices do not respond effectively to power cuts

New Project: Plug Load EE Program Analysis

- Provide guidance on future programs that help reduce commercial plug load energy consumption
- Review existing programs, third-party evaluation reports, databases, and the academic literature
- Identify promising
 - >devices
 - utility programs
 - >program approaches

Traditional End Use EE Programs

Fig 1. Electricity Savings for Com Ed Commercial EE Programs, by Measure Category

Source: Navigant Consulting, 2019

Creating Connections. Powering Innovation. Boosting Efficiency.

Fig 2. Electricity Usage by End Use Category for Com Ed Commercial Accounts

Key Plug Load Categories

Category	Examples
Traditional end use	HVAC, Lighting, Water heating, Major Appliance
Plug load	 Electronics, e.g., computer, display, peripherals, networking, server Imaging (copier, receipt printers) audio visual equipment money exchange (credit card readers, scanners) telephony Other equipment, e.g.,: business equipment (e.g., shredder, cash drawer) portable HVAC units (e.g., space heaters) portable lighting kitchen equipment, electric housewares power (e.g., uninterruptible power supply) medical equipment vending machines
Hard-wired loads	Escalators, elevators, security systems, fire detectors

Program Analysis Approach

- Assess and select devices, including plug load control systems
- Compare programs across utilities
- ➢ Device → programs
- \succ Program \rightarrow devices
- Recommendation categories:
 - > Add device to existing program
 - Modify existing program
 - > Add program addressing device(s)

Early Results

- ComEd boasts a very comprehensive program portfolio
- Promising avenues:
 - Individual device incentives
 - > Adding devices to company/unit-level programs
 - Power management for computers
 - Office equipment and control systems
 - Communication, education

Facility Assessments

Incentives

Building Optimization

Energy Management

Next: Our Latest Findings

Presenting Katie Gladych!

EE and DR Program Opportunities in Connected Plug Load Devices (SDG&E)

Project Goals:

- Provide insight into under-researched connected devices
- > Assess potential energy savings for connectivity in residential plug loads
- Make relevant EE and DR program recommendations

Approach

Initial Device List and Selection

Evaluation for:

1. Connectivity

2. Market Trends

3. Program Savings Potential

CALIFORNIA PLUG LOAD RESEARCH CENTER

CalPlug Connectivity Classification

Connectivity Class	Class Identification	Class Description
0	Non-Connected (Null Case)	Power management w/out connectivity
1	Reporting Only	Energy usage reporting; manual DR notifications
2	Real Time Monitoring w/Control	Connectivity class 1 + ability to adjust settings remotely
3	Demand Response (Automated)	Remote triggering for DR actions
4	Network-Based Device Management	Remote/cloud capability to control or fine tune device operation
5	Network-Based Management w/ Edge Computing Control	Connectivity class 4 + capability of local (edge) processing

Assessing Cost Effectiveness

- TRC = Total Resource Cost
- Problem: Insufficient data
- Solution: We created a new assessment tool for modified TRC calculation
 - > Simplifies and streamlines the variables
 - Allows a range of inputs to reflect uncertain data
 - Produces reasonable program performance bounds to assess cost-effectiveness

Simplified TRC Calculation

Equation:
$$TRC = \frac{Benefit}{Cost} = \frac{UAC_t + TC_t}{PRC_t + PCN + UIC_t}$$

Cost Effectiveness = TRC > 1

	Variables	Definition of Variables
Benefits	UACt	<i>Utility</i> avoided supply costs in year t (Energy savings)
	TCt	Tax credits in year t
Costs	PRCt	Program Administrator program costs in year t
	PCN	Net Participant Costs
	UICt	Utility increased supply costs in year t

Results: Devices/Systems (EE)

Device/System	CA Work Paper	Energy Star Specific Product Category	Modeled lifetime (yr)	Model Max TRC
Connected Refrigerator (v. non- connected) Class 1,2,3,4	~	~	14	0.05
Connected Washing Machine (v. non-connected) Class 1,2,3,4	×	×	11-15	0.62
Variable Speed Pool Pump (v. 2- speed) Class 1,2,3	×	•	9-11	5.71
Smart Plug with Window AC Unit (v. without smart plug) Class 1,2,3	×	×	3-5	1.6
Smart Plug with Hot Water Dispenser (v. without smart plug) Class 1,2,3	×	×	3-5	0.97
Tier 2 APS with AV/Entertainment (v. without APS) Class 1	~	×	3-5	1.6

Example TRC Calculation – Tier 2 APS Comparison

Non-Connected vs. Connected Tier 2 APS

So Does Connectivity Save Energy?

- Comparison between connected and non-connected Tier 2 APS shows almost identical hardware, software, and functionality
 - > Connectivity adds user monitoring features, but no real extended EE
 - Connectivity features lead to only about 6 kWh/year additional savings per field trial results

> Similar findings for other devices:

- > Washing machines
- > Refrigerators
- VSD pool pumps
- Smart plugs

Technical Considerations of Connectivity

Role of Connectivity and Decision Space *Assessing value, accuracy, and actionability*

<u>Automatic and Coordinated Control</u> More parameters and potentially more stable decision space. Often logical rules: What added benefit can coordination, AI, or connectivity add?

Human in the loop (HIL) control

Summarized user feedback in a convenient user interface improves both usage efficiency and reduction of wasteful use estimated at 2-6% savings in many cases.

Energy Efficiency and Connectivity: Discussion

Current status of EE with Connectivity

- Limited CA work completed to current date
 - Need further device field tests

> Limited EE connectivity opportunities for plug load appliances

- Role of user interfaces and device interaction, expanding actionability and decision space
- Connectivity enabling operation towards Human-in-the-Loop/User behavior

Extended considerations

- Costs/overhead of connectivity
- Integration into IoT systems/SHEMS

Connectivity and DR: Results

Device	Shift period duration (ENERGY STAR)	Shift savings (261 periods/yr) kWh/yr	Shed period duration (ENERGY STAR)	Shed savings (261 periods/yr) kWh/yr
Connected Refrigerator	4 hr	15.97 kWh/yr	10 min	1.53 kWh/yr
Connected Washing Machine	4 hr	15.40 kWh/yr (at 100%)	10 min	1.55 kWh/yr (at 100%)
VSD Pool Pump	4 hr	63.20 kWh/yr	20 min	8.10 kWh/yr

Connectivity and DR: Discussion

- ENERGY STAR Smart Connected Devices category largely is focused on DR action.
- AutoDR relies on connectivity for control
- Load shift/shed limited for plug load devices
 User experience
- DR solutions better suited to major appliances than smaller plug loads
 - Larger peak loads to shed
 - Physical control limits

Summary

Connectivity offers limited EE savings in plug load devices

> IoT systems in future may address this challenge

Connectivity offers limited DR savings in plug loads
 Potential for Human-in-the-Loop

Recommendation: Continued collaboration between utilities, DOE/ ENERGY STAR program, and manufacturers to improve EE standards and DR protocols for plug loads

Thank you!

CalPlug Team Presenters: Joy Pixley, Katie Gladych, Michael Klopfer

