Overview of CalPlug Research

Joy Pixley, Research Director
Katie Gladych, Project Manager
Michael Klopfer, Technical Director

CalPlug Workshop April 21, 2020

EE and DR Program Opportunities in Connected Plug Load Devices (SDG&E)

Project Goals:

- Provide insight into under-researched connected devices
- Assess potential energy savings for connectivity in residential plug loads
- Make relevant EE and DR program recommendations

Approach

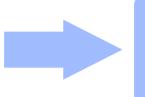
Initial Device List

Device Selection (Flowchart)

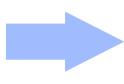
Device Characterization/Energy Savings Mechanisms

Deep Dives

TRC Calculation (and development of new TRC tool)


Results

Connectivity Discussion: EE & DR



Initial Device List and Selection

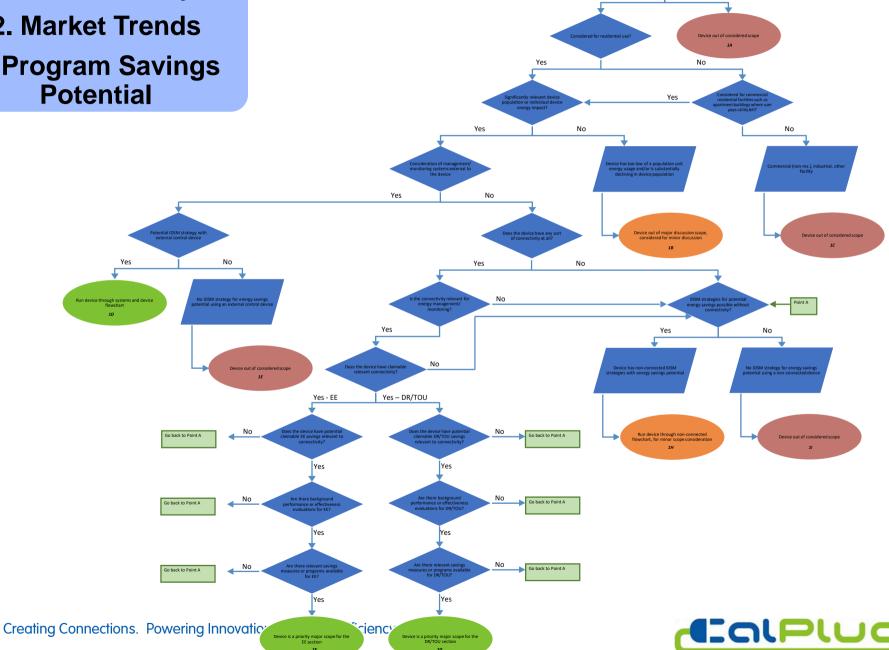
Significant Residential Plug Loads



Device
OR
System

Evaluation for:

- 1. Connectivity
- 2. Market Trends
- 3. Program Savings Potential



Evaluation for:

- 1. Connectivity
- 2. Market Trends
- 3. Program Savings **Potential**

CALIFORNIA PLUG LOAD RESEARCH CENTER

CalPlug Connectivity Classification

Connectivity Class	Class Identification	Class Description
0	Non-Connected (Null Case)	Power management w/out connectivity
1	Reporting Only	Energy usage reporting; manual DR notifications
2	Real Time Monitoring w/Control	Connectivity class 1 + ability to adjust settings remotely
3	Demand Response (Automated)	Remote triggering for DR actions
4	Network-Based Device Management	Remote/cloud capability to control or fine tune device operation
5	Network-Based Management w/ Edge Computing Control	Connectivity class 4 + capability of local (edge) processing

Assessing Cost Effectiveness

- TRC = Total Resource Cost
- Problem: Insufficient data
- Solution: We created a new assessment tool for modified TRC calculation
 - > Simplifies and streamlines the variables
 - Allows a range of inputs to reflect uncertain data
 - Produces reasonable program performance bounds to assess cost-effectiveness

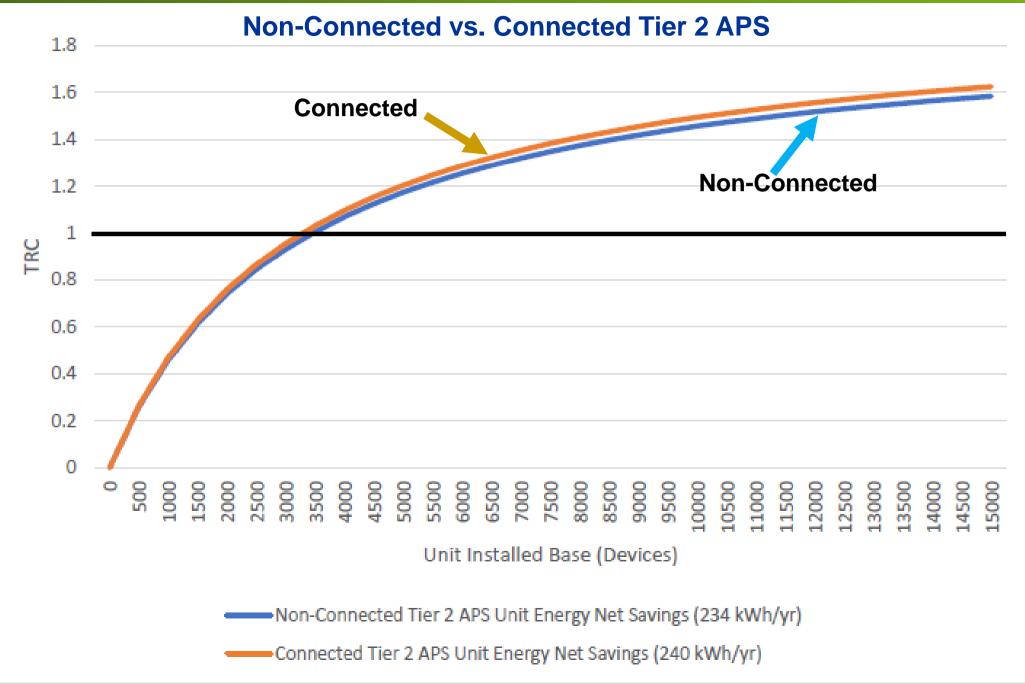
Simplified TRC Calculation

Equation:
$$TRC = \frac{Benefit}{Cost} = \frac{UAC_t + TC_t}{PRC_t + PCN + UIC_t}$$

Cost Effectiveness = TRC > 1

	Variables	Definition of Variables	
Benefits	UACt	Utility avoided supply costs in year t (Energy savings)	
	TCt	Tax credits in year t	
Costs	PRCt	Program Administrator program costs in year t	
	PCN	Net Participant Costs	
	UICt	Utility increased supply costs in year t	

CALIFORNIA PLUG LOAD RESEARCH CENTER


Results: Devices/Systems (EE)

Device/System	CA Work Paper	Energy Star Specific Product Category	Modeled lifetime (yr)	Model Max TRC
Connected Refrigerator (v. non-connected) Class 1,2,3,4	~	✓	14	0.05
Connected Washing Machine (v. non-connected) Class 1,2,3,4	X	X	11-15	0.62
Variable Speed Pool Pump (v. 2- speed) Class 1,2,3	X	✓	9-11	5.71
Smart Plug with Window AC Unit (v. without smart plug) Class 1,2,3	X	X	3-5	1.6
Smart Plug with Hot Water Dispenser (v. without smart plug) Class 1,2,3	X	X	3-5	0.97
Tier 2 APS with AV/Entertainment (v. without APS) Class 1	~	X	3-5	1.6

Example TRC Calculation – Tier 2 APS Comparison

So Does Connectivity Save Energy?

- Comparison between connected and non-connected Tier 2 APS shows almost identical hardware, software, and functionality
 - Connectivity adds user monitoring features, but no real extended EE
 - Connectivity features lead to only about 6 kWh/year additional savings per field trial results
- Similar findings for other devices:
 - Washing machines
 - Refrigerators
 - > VSD pool pumps
 - Smart plugs

Technical Considerations of Connectivity

Role of Connectivity and Decision Space Assessing value, accuracy, and actionability

Automatic and Coordinated Control
More parameters and potentially
more stable decision space. Often
logical rules: What added benefit can
coordination, AI, or connectivity add?

Human in the loop (HIL) control

Summarized user feedback in a convenient user interface improves both usage efficiency and reduction of wasteful use estimated at 2-6% savings in many cases.

Energy Efficiency and Connectivity: Discussion

- Current status of EE with Connectivity
 - > Limited CA work completed to current date
 - > Need further device field tests
 - > Limited EE connectivity opportunities for plug load appliances
 - ➤ Role of user interfaces and device interaction, expanding actionability and decision space
 - Connectivity enabling operation towards Human-in-the-Loop/User behavior
- Extended considerations
 - Costs/overhead of connectivity
 - **▶** Integration into IoT systems/SHEMS

Connectivity and DR: Results

Device	Shift period duration (ENERGY STAR)	Shift savings (261 periods/yr) kWh/yr	Shed period duration (ENERGY STAR)	Shed savings (261 periods/yr) kWh/yr
Connected Refrigerator	4 hr	15.97 kWh/yr	10 min	1.53 kWh/yr
Connected Washing Machine	4 hr	15.40 kWh/yr (at 100%)	10 min	1.55 kWh/yr (at 100%)
VSD Pool Pump	4 hr	63.20 kWh/yr	20 min	8.10 kWh/yr

Connectivity and DR: Discussion

- ENERGY STAR Smart Connected Devices category largely is focused on DR action.
- AutoDR relies on connectivity for control
- Load shift/shed limited for plug load devices
 - User experience
- DR solutions better suited to major appliances than smaller plug loads
 - Larger peak loads to shed
 - Physical control limits

Summary

- Connectivity offers limited EE savings in plug load devices
 - > IoT systems in future may address this challenge
- Connectivity offers limited DR savings in plug loads
 - Potential for Human-in-the-Loop
- Recommendation: Continued collaboration between utilities, DOE/ ENERGY STAR program, and manufacturers to improve EE standards and DR protocols for plug loads

Questions?

Thank you!

CalPlug Team Presenters:
Joy Pixley, Katie Gladych, Michael Klopfer

