Object Oriented Design in Energy & Decision Management

CalPlug 18th Workshop

October 18, 2021
Major Topics

- Control types
 - Open Loop Control
 - Closed Loop Control
 - PID Loops
 - False Promise of Simplifying PID Loops
 - Virtual Closed Loop Control
 - Context
 - Application

- Influence of Object Oriented Design
 - Energy Management
 - Extreme Tagging
 - Decision Management
 - Decision as a Class of Object
 - Speed to Decision: Object Workflow
 - CRSP-DM: Cross-Industry Standard Process for Data Mining
Open Loop Control

Set Point Parameter in Controller → Control Signal → Active Cooling Process → Output without Managed Bias

Closed Loop Control

Set Point Parameter in Controller → Control Signal → Active Cooling Process

Measuring Element (e.g. - PID Loop)

Output with Managed Bias → Yes

No
The PID Loop & Full Expression of Error

\[P = \text{Proportional (amplitude)} \]
\[I = \text{Integral (time)} \]
\[D = \text{Derivative (rate or slope)} \]

The limit of the controller's output as error approaches zero is zero:

\[\lim_{s \to 0} f(X) = 0 \]
PID Loops in Control Theory

The limit of the controller's output as error approaches zero is zero:

\[\lim_{S \to Z} f(X) = 0 \]

Full Expression of Error (LaPlace Transform):

\[L(s) = [K_p + (K_I/s) + (K_Dxs)] \]

PID Loop

- \(K_p \) = Proportional (amplitude)
- \(K_I/s \) = Integral (time)
- \(K_Dxs \) = Derivative (rate or slope)
- \(K \) = Gain
- \(S \) = complex frequency

Control Signal

Set Point Parameter in Controller

Active Cooling Process

Output with Managed Bias

Yes

No
The False Promise of Simplifying PID Loops

If I and D are set to zero in order to simplify the PID Loop, then there only P remains to express error, therefore this modification cannot achieve a full expression of error.

Limited Expression of Error:

\[[K_p + 0 + 0] \]

\(K = \text{Gains} \)
Virtual Closed Loop Control

Set Point Parameter in Controller → Control Signal → Active Cooling Process → Output with Managed Bias

Zone Temperature Sensor input

EDGE DEVICE IN THE FIELD

ADVANCED SUPERVISORY CONTROL

Zone Temperature Set Point Bias Adjustment via Machine Learning

GATEWAY

facil.ai Corp, All Rights Reserved
Contextualizing Virtual Closed Loop Control for Energy Management

The 3 V's: Volume, Velocity, Variety

Enterprise Energy Management

Building as a Battery

Adaptive Energy Management

Gateway Technology

Virtual Closed Loop control

Machine Learning

Energy Control Measures

Temperature
Humidity
Indoor Air Quality
Pressure
Light

2021 facil.ai Corp, All Rights Reserved
Object Oriented Design

The Four Pillars of OOD

- Encapsulation
- Polymorphism
- Abstraction
- Inheritance

Class
Object
Extreme Tagging

#temperature | #saTemp | #zone | #setpoint | #los_angeles | #california | #united_states | #zip_code | #geo_code | #ASHRAE_zone | #commandable | #range | #unreasonable | #reasonable | #comfort | #demand_response | #edison | #utility | #pressure_dependent | #pressure_independent | ...

Vendor & Standards compatibility:

→ #saTemp → Novar auxTemp
→ #saTemp → jciSA_T
→ #saTemp → haystack dischAirTemp
→ #saTemp → brick, Google

Attributes

<table>
<thead>
<tr>
<th>Command</th>
<th>Entity Type</th>
<th>Entity</th>
<th>Param 1</th>
<th>Param 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>A point</td>
<td>Occupied Setpoint</td>
<td>78</td>
<td>-</td>
</tr>
<tr>
<td>Edit</td>
<td>Schedule</td>
<td>Schedule32 RTU1</td>
<td>20:00</td>
<td>22:00</td>
</tr>
<tr>
<td>Edit</td>
<td>Schedule</td>
<td>Schedule32 RTU1</td>
<td>2:00</td>
<td>08:00</td>
</tr>
</tbody>
</table>

Queue

Los Angeles Gateway
Point of Sale Gateway
Point of Sale Gateway

← Cloud

Gateway (THIS IS OUR SOURCE OF TRUTH) →

Status

* - subject to four hour validation period

-Queued
-Cmd ack
-Pending*
-Executed*
-Success*
-Deleted

Returned to Queue
Decision Management & Object Oriented Design

Decision Requirements

- Gathering
- Understanding
- Valuable Prediction Goals
- Viable Goals
- Analytically Predictable Behaviors

The Four Pillars of OOD

- Encapsulation
- Polymorphism
- Abstraction
- Inheritance

Class (or Decision)

Object (an instance of a Class...or Decision)

Source: Digital Decisioning by James Taylor, 2nd edition, 2019
Speed to Decision: Object Workflow

Objects may include but are not limited to:
- Alarms
- Analytic Signals
- Contacts from field sites
- Budget Variance

Persistence, Coincidence & Intensity

Object Workflow:
1. **Site is Offline**
 - Yes: Open W/O's
 - No: RTU not Heating or Cooling
 - Yes: If Zone +/- 2° to set point: dispatch
 - No: RTU is Offline
 - Yes: Poor Delta T
 - Yes: Add to watch list
 - No: Decline
 - No: Direct
 - Yes: Append or open W/O's
 - No: Indirect
 - Yes: Append to future W/O's
1. **Dispatch**

Speed to Decision: Object Workflow
CRSP-DM: Cross-Industry Standard Process for Data Mining

1. Business Understanding
 - Yes → Data Understanding
 - No → Deployment

2. Data Understanding
 - Yes → Data
 - No → Modeling

3. Data
 - Yes → Evaluation
 - No → Data Preparation

4. Data Preparation
 - Yes → Data
 - No → Modeling

5. Modeling
 - Yes → Data
 - No → Evaluation

6. Evaluation
 - Yes → Data Understanding
 - No → Deployment

7. Deployment
 - Yes → Business Understanding
 - No → Evaluation
Thank you

Contact Information

Paul Campbell | Vice President of AI & ML Solutions at facil.ai
879 West 190th Street | Suite 400 | Gardena, CA 90248

email: pcampbell@facil-ai.com | LinkedIn profile: www.linkedin.com/in/paul-campbell-vp-ai-ml-solutions

Link to the original 2019 Virtual Closed Loop Control whitepaper