California Load Flexibility Research and Deployment Hub

Presentation to the CalPlug Workshop Oct 18, 2021

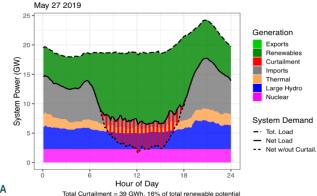
Mary Ann Piette Division Director, Building Technology and Urban Systems Research Sponsors: US DOE BTO, CPUC and CEC

ENERGY TECHNOLOGIES AREA

Advance the capability of buildings to provide a flexible electricity load for the State of California.

 Identify, evaluate, develop, and demonstrate precommercial, load-flexible pre-commercial technologies

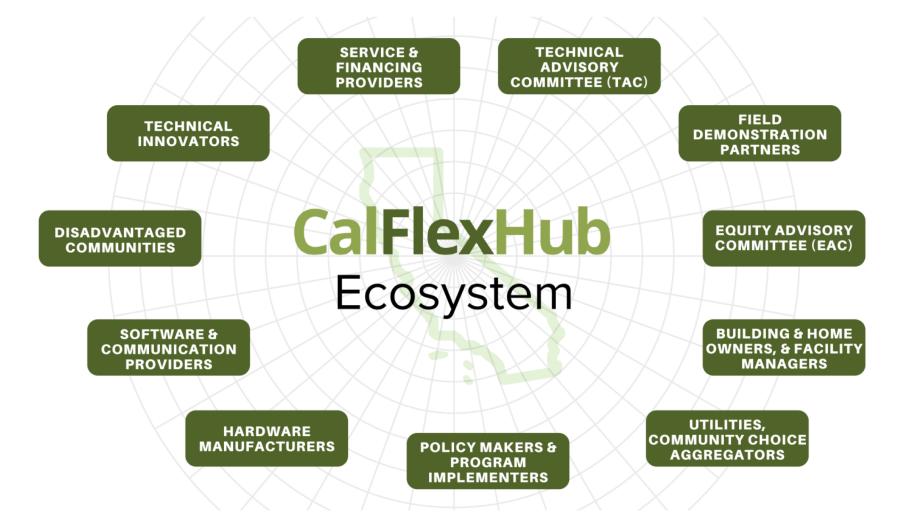
- Standardize the signals used to communicate dynamic price and GHG information to these technologies
- Emphasis is Load Shaping DR but CalFlexHub will also evaluate supply-side DR

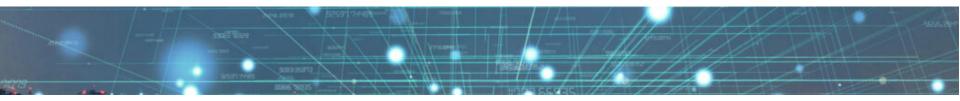


The Solution: Prices To Devices

A future where building loads receive continuous price information and adjust their electricity consumption automatically for maximum affordability, reduced carbon content, or a mixture of both.

Signals will include Watt Time signals.


Assume the future will include grid-informed tariffs: TOU, CPP, RTO CAISO Generation and Demand May 27 2019



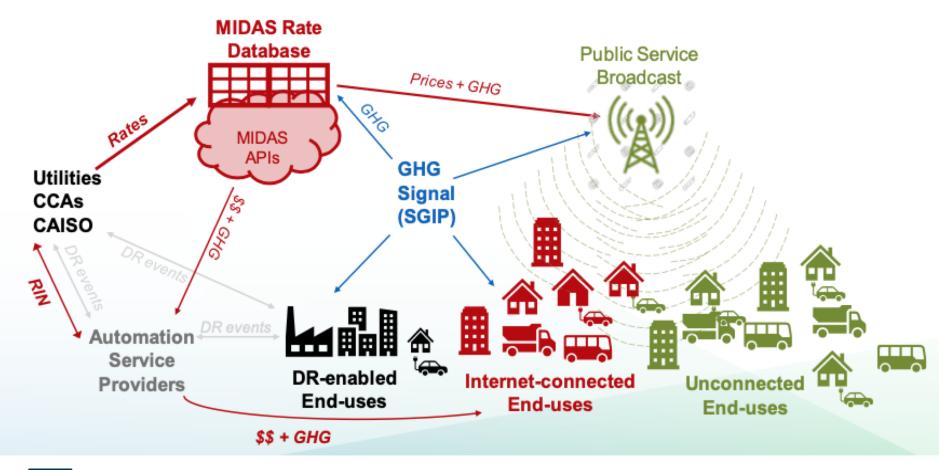
Net Load Ramp: 4-hour = 9.8GW; 1-hour = 3.7GW

Equity

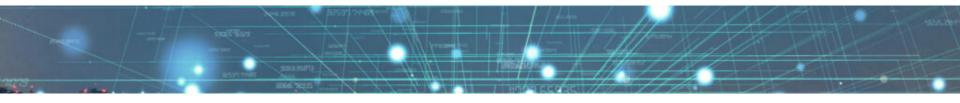
CalFlexHub seeks to benefit all Californians, including those from disadvantaged communities.

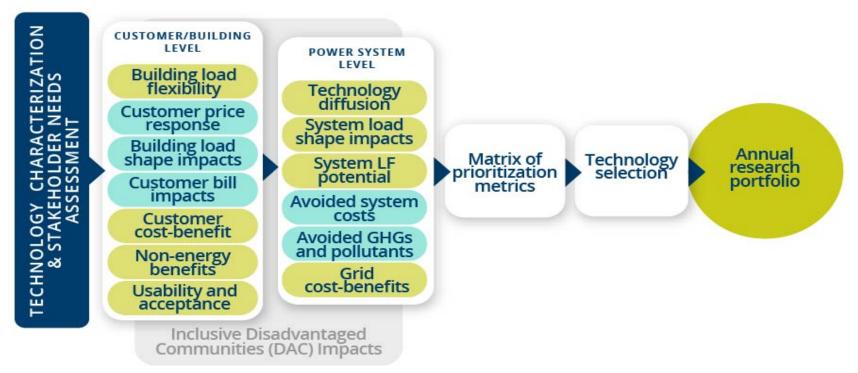
Target technologies will be practical, affordable, and reliable.

Signals will be broadcast over the internet and via FM radio waves—accessible to virtually every household and business in California.

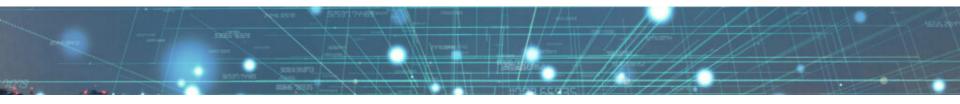

Funded and Cost Share Partners

CalFlexHub includes 23 other partners, industry, building owners





MIDAS - Market Informed Demand Automation Server



Annual Technology Assessment Process

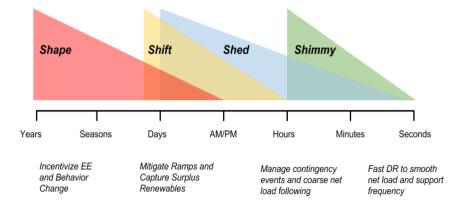
Portfolio management framework for valuation of impacts of CalFlexHub technology portfolios and development of annual research portfolio. Berkeley Lab models (green); E3 models (turquoise).

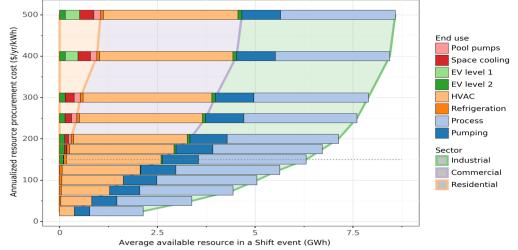
Six Applied R&D Projects – Lab and Initial Demo Sites

		Funded Partners	Other Partners	Location/Sites
A1	Residential Smart Fan with Integrated Thermostat	UCB	Big Ass Fans	UCB, Stockton Senior Center
A2	Dynamic Heat Pump for Residential Space Heat and DHW	UCD	Ecobee, Rheem, Carrier	UCD, Future Multi Family Site
A3	Dynamic Space Heat for Small Commercial HVAC	LBNL	Melrok	LBNL FlexLab, EPIC HP-Flex Sites
A4	Integrated Heat Pump and Cold Storage for Small Commercial HVAC	LBNL	Sunamp, Aermec, UCD Facilities	UCD
A5	Model Predictive Control for Dynamic Large Commercial and District Energy Systems	LBNL, UCSD	UC Merced Facilities	LBNL, UCSD, UC Merced
A6	Home Energy Management System to Maximize Electrical Panels with Electric Storage	LBNL	Orison, Heila, Span.io	LBNL

Six Technology Demonstration and Deployment Projects – Field Sites

		Funded Partners	Other Partners	Location/Sites
Т7	Integrated Small Commercial Energy Management with DERs	UCD, Extensible Energy	Gridpoint	UCD
Т8	Integrated Heat Pump with Storage for DHW and Space Conditioning	UCD	Villara	Nor Cal Homes
Т9	Residential HVAC and Hot Water Using Integrated Storage	LBNL, Harvest Thermal		East Bay Homes
T10	Household Flexible EV Charging	UCB	BMW	California Homes
T11	Bi-Directional EV Charging	UCD	Honda	UCD and UCSD
T12	Control and Coordination of Distributed Flexible Loads	Olivine, SkyCentrics	Ecobee, Pentair, Sonoma Clean Power, Belmont Redwood Shores Schools, Richmond MSH Properties, City of Pittsburg Unified Schools, UCB Richmond Field Station	Belmont, Richmond, Pittsburg, Sonoma, LA County, and others




CPUC Demand Response Potential Studies Explore Size and Value of GEBs

- Shape: persistent daily load modifications
- Shed: acts like virtual generation capacity
- Shift: acts like a virtual storage resource
- Shimmy: acts like a virtual regulation/ancillary services resource
- Phases 1, 2 and 3 provided the shed capacity (GW) and shift (GWh) from GEBs. Buildings could provide about 2 GW at \$200/kW-yr Levelized cost for 2025.
- Current modeling (Phase 4) will cover new end-uses and update customer data.
- Key questions: How large is Shed and Shift resource, where are resources and when is it available, and at what cost?
- Key takaway: Shift can play important role in California's renewable grid, but it will need to grow. We can explore ways to bring down costs and drive participation.

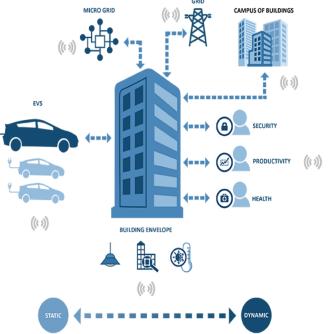
ENERGY TECHNOLOGIES AREA

Shift Supply Curve for 2030

Battery threshold (reference price)

- Shift DR in California: 4-6 GWh of virtual storage cheaper than BTM batteries (~\$150/yr/kWh), about 40% from buildings, a significant portion of current grid challenges.
- **Electrification** will introduce a new Shift resource, modeled in new Phase 4.
- Shift resource will be **much larger** if customer participation is higher than observed historically for Shed DR.
- With ~1 percent of load shifted in 2017, ~150 GWh of total curtailment could have been avoided (~ 50 % of curtailment), replacing non-renewable generation with zero carbon renewable energy.

End-Uses Considered in Cluster Load Shapes


Recent updated AMI data analysis expands scope of buildings and end uses

Residential Sector		Commercial Sector			
Building Types	End Uses	Building Types	End Uses		
 Single-family Multi-family Master meter 	 Cooling Heating Ventilation Indoor Lighting Outdoor lighting Outdoor lighting Cooking Dishwasher Clothes Washer Clothes Dryer Refrigerator Freezer Pool pump Spa heater Spa pump Television Office equipment PCs Water heating 	 Office Retail-food Retail-other Dining Lodging Medical Education Assembly Datacenter Warehouse Refrigerated warehouse Entries in red in Phase 4	 Cooling Heating Ventilation Indoor lighting Outdoor lighting Office equipment Refrigeration Water heating Datacenter IT Misc. EV charging Rooftop PV 		
ENERGY TECHNOLOGIES AREA	• EV level 1 • EV level 2 • Rooftop PV	Green where	new in Phase 3 eta.lbl.gov		

Summary

CalFlexHub will support state goals in advancing demand flexibility and decarbonization in buildings

- **Evaluate capability** of building end-use systems load systems to respond to price signals
- Identify new technology that can deepen response
- Understand value of price vs carbon signal
- Evaluate how to overcome barriers to deployment such as usability, costs, tech capabilities

