Al for Medical Imaging: Data Challenges and Novel Solutions

Peter D. Chang, MD University of California Irvine

Cofounder Consultant Grants Other

Avicenna.ai Olea Medical; Canon/Toshiba Medical Novocure NVidia Corporation (GPU partnership) Amazon Web Services (cloud compute)

ImageNet

How to measure state-of-the-art?

ImageNet Database

- 14+ million images of everyday objects
- Hand-annotated (Amazon Turks)

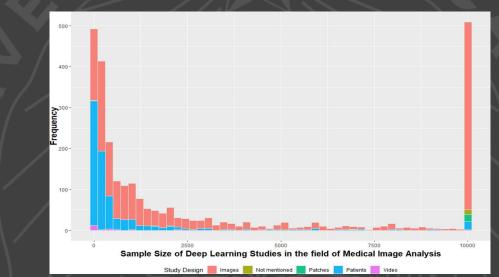
ILSVRC Challenge (since 2010)

- ImageNet Large Scale Visual Recognition
- Trimmed list of 1K non-overlapping classes
- Only CNN winners since 2012

GENET

Challenges: Generalizability

Algorithm **brittleness** relates directly to data diversity


Challenges

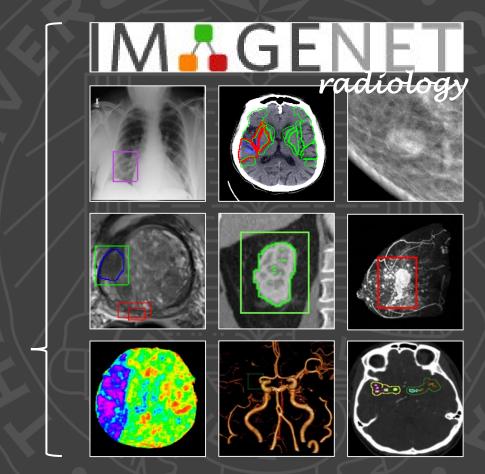
- Small, single-institutional datasets
- Inconsistent and slow curation
- Narrow use-case

Datasets

- UC Irvine: **3M+** exams
- The Cancer Imaging Archives: **50,000+** exams
- University of California: **1M+** abdominal CT exams
- Northwestern: **100,000** head CT exams
- VA System: **1M+** head CT exams

Wang, Lu, et al. "Trends in the application of deep learning networks in medical image analysis: Evolution between 2012 and 2020." *European Journal of Radiology* 146 (2022): 110069.

Challenges: Generalizability


Algorithm brittleness relates directly to data diversity

Advantages

- Large, multi-institutional datasets
- Ease of development
- Fine-tune **pretrained** algorithms

Datasets

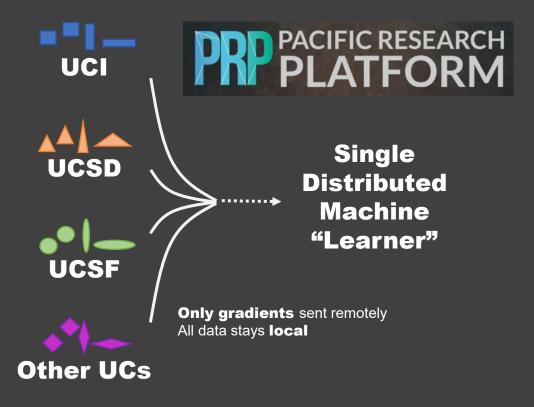
- UC Irvine: **3M+** exams
- The Cancer Imaging Archives: **50,000+** exams
- University of California: **1M+** abdominal CT exams
- Northwestern: **100,000** head CT exams
- VA System: **1M+** head CT exams

Trends: Multisite Training

Small datasets are a common bottleneck

- Cultural barriers
- Technical challenges
- Anonymization

Solution: federated and distributed deep learning

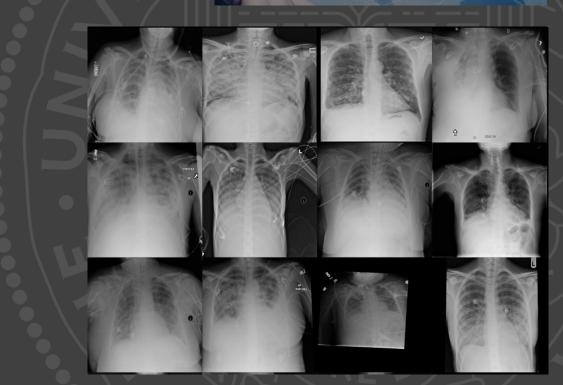


Trends: Multisite Training

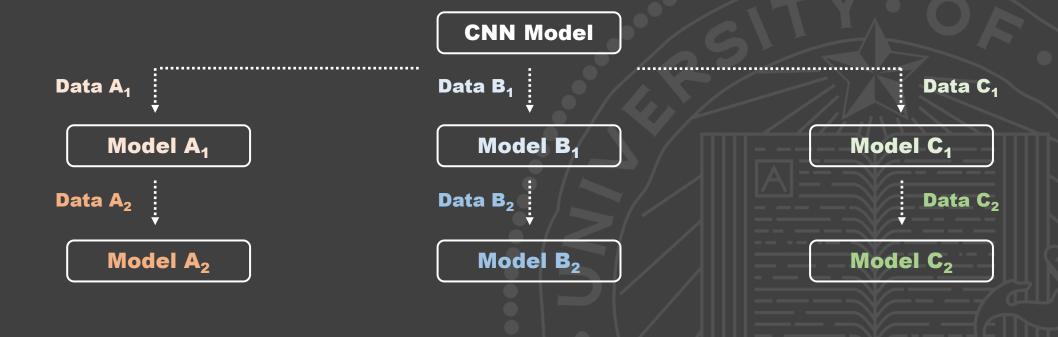
Cross-UC Collaboration

- 1. ICH box localization (CT)
- 2. Kidney and RCC segmentation (CT)
- 3. ETT position (XR) radiograph

Results: improved generalizability | faster training times



ACR COVID-19 Project


Detection of COVID-19 infection on chest radiographs

ACR AI-LAB™

Continuous Learning

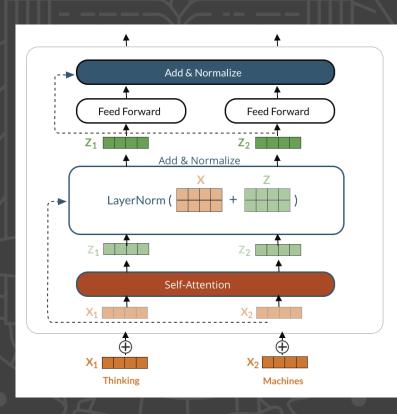
Continuous model fine-tuning

- Precedent: CT and MR scanner protocols (institution-specific)
- Biggest limitation: annotations

Unsupervised models discover inherent patterns in data

Implementation strategies

- Self-supervised learning
- Deep clustering


State-of-the-art: GPT-3

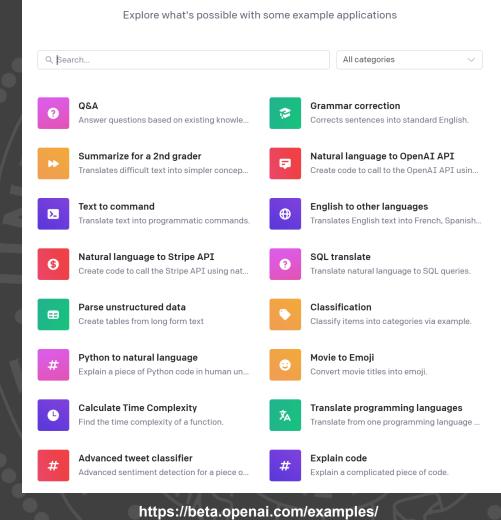
- Top performing language model (July 2020)
- **175 billion** parameters

Fill in the [_____]. (autoregression task)

Brown, Tom B., et al. "Language models are few-shot learners." *arXiv preprint arXiv:2005.14165* (2020).

•••••••••••• (e.g., anatomy, tissue composition)

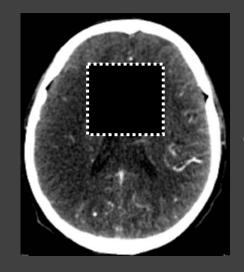
State-of-the-art: GPT-3

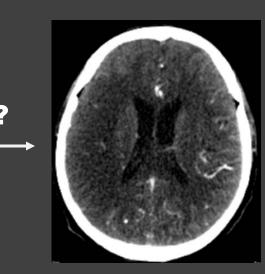

- Top performing language model (July 2020)
- **175 billion** parameters

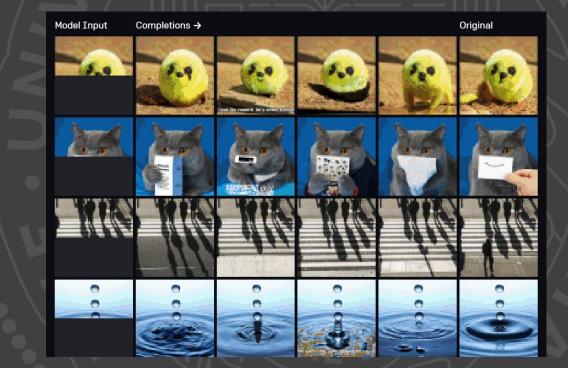
https://www.theguardian.com/commentisfree/2020/sep/08/r obot-wrote-this-article-gpt-3

🕲 OpenAI

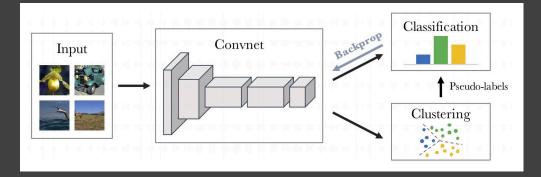
Examples




Unsupervised models discover inherent patterns in data


Implementation strategies

- Self-supervised learning
- Deep clustering



Deep Clustering

Caron, Mathilde, et al. "Deep clustering for unsupervised learning of visual features." *Proceedings of the European Conference on Computer Vision (ECCV)*. 2018.

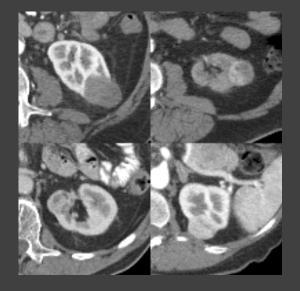
Create clusters

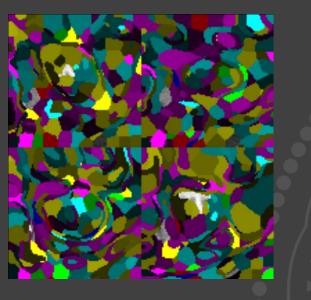
- Run all data through CNN to produce feature embedding
- Apply clustering algorithm on features

Supervised loss

Use clusters as pseudo-labels (classification loss)

Deep Clustering


Iterative training alternating unsupervised clustering with supervised CNN training each epoch


Assumption: initial clustering is **non-random**

3.2 Unsupervised learning by clustering

When θ is sampled from a Gaussian distribution, without any learning, f_{θ} does not produce good features. However the performance of such random features on standard transfer tasks, is far above the chance level. For example, a multilayer perceptron classifier on top of the last convolutional layer of a random AlexNet achieves 12% in accuracy on ImageNet while the chance is at 0.1% [26]. The good performance of random convnets is intimately tied to their convolutional structure which gives a strong prior on the input signal. The idea of this work is to exploit this weak signal to bootstrap the discriminative power of a convnet. We cluster the output of the convnet and use the subsequent cluster assignments as "pseudo-labels" to optimize Eq. (1). This deep clustering (DeepCluster) approach iteratively learns the features and groups them.

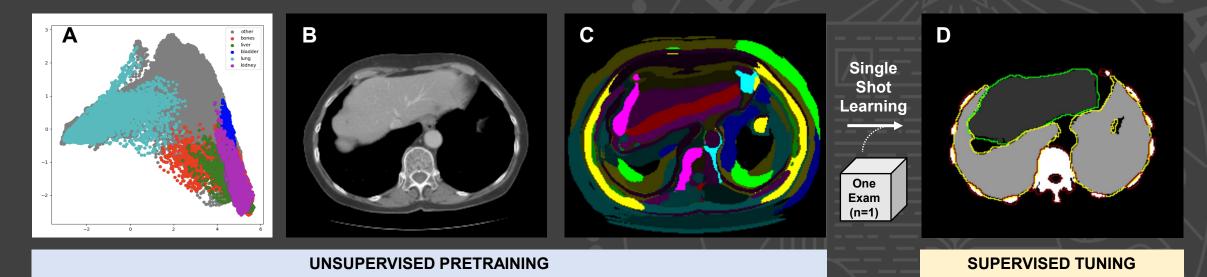
Deep Clustering

Medical Segmentation

To encourage consistent anatomy:

- Voxel (pixel) coordinate
- Voxel (pixel) value

Deep Clustering


Iterative training alternating unsupervised clustering with supervised CNN training each epoch

Assumption: initial clustering is **non-random**

3.2 Unsupervised learning by clustering

When θ is sampled from a Gaussian distribution, without any learning, f_{θ} does not produce good features. However the performance of such random features on standard transfer tasks, is far above the chance level. For example, a multilayer perceptron classifier on top of the last convolutional layer of a random AlexNet achieves 12% in accuracy on ImageNet while the chance is at 0.1% [26]. The good performance of random convnets is intimately tied to their convolutional structure which gives a strong prior on the input signal. The idea of this work is to exploit this weak signal to bootstrap the discriminative power of a convnet. We cluster the output of the convnet and use the subsequent cluster assignments as "pseudo-labels" to optimize Eq. (1). This deep clustering (DeepCluster) approach iteratively learns the features and groups them.

Unsupervised Pretraining for **Single-Shot** Segmentation

AIR @ UCI

Vision Statement

"A new cross-disciplinary initiative to develop and deploy medical tools based on artificial intelligence technology spanning across the UC Irvine Healthcare system."

Applied AI Research Center (AIR) UC Irvine Health

Questions?

Peter D. Chang, MD changp6@uci.edu

Center for AI in Diagnostic Medicine

UC Irvine Medical Center http://caidm.som.uci.edu/ @TheCAIDM ☑