

Place-based renewable energy infrastructure at scale

November 10, 2022

Danielle Preziuso Systems Engineer

PNNL is operated by Battelle for the U.S. Department of Energy

PNNL-SA-179649

Opportunities, Challenges, and the Promise of Place-Based Infrastructure

Design Pathways

https://www.pnnl.gov/projects/renewable-energy-landscapes

Historical Lessons and Looking to the Future

The Opportunity: A Changing Energy System

Policies and Initiatives

Technology Advancements

Technology Adoption and End Use Behaviors

68 : 🤊 🏠 📥

Just Energy Transition

The Challenge: A Development Dichotomy?

Meeting the Moment: Creating Synergy

Renewable Energy Landscapes A landscape whose physical characteristics have been significantly transformed by renewable energy infrastructure

Place-Based at Scale

Deployment of infrastructure systems in a way that balances the ability to be replicated widely (at scale), with careful attention to unique local character of specific places

Image Credit: Yeongseo Yu, University of Oregon

Pathways for Renewable Energy Landscapes

Multifunctionality

Concept: Collocating renewable energy technologies with other technologies and land uses

- Land-use efficiency vs. generation efficiency
- Type of site and renewable energy
- Existing land-use regulations

Natural Capital

Concept: Leveraging natural resources that generate the ecosystems on which communities depend to provide societal and economic benefits

A. General framework for ecosysm services assessment

Social benefits

B. Framework for assessment of renewable energy on example ecosystem services

Image Credit: Yeongseo Yu, University of Oregon, adapted from Olander et al. 2018.

- Potential for infrastructure to create positive and negative effects on ecosystems and the benefits they contribute to society
- Meeting community objectives that serve people and nature

Generating Local Value

Concept: Responding to the needs and goals of local communities and landscapes

- New stakeholders and sustained partnerships
- Understanding local goals, challenges, and values
- Monetary vs. nonmonetary value
- More accessible infrastructure

Decentralization

Concept: Transitioning from large, centralized plants to smaller-scale renewable energy generation located closer to where energy is consumed

- Integrating technologies into communities and built environments
- Making energy technologies something communities want nearby

Resilience to Climate Change

Concept: Addressing community vulnerabilities that arise from climate-driven, extreme weather events

- Mitigating blackouts and loss of critical services
- Resilience hubs and microgrids
- Diverse set of energy technologies and demand-side management

Energy Justice

Concept: Fairly distributing the costs and benefits created by the energy system while enabling impartial decision making and equitable participation

- Sensitive energy development and thoughtful decommissioning
- Countering legacies of harm
- Prioritizing development in communities facing disproportionate energy insecurity or energy burden
- Understanding historical and cultural context

Lessons from History

- Achieving multifunctionality through appropriate and controlled public access
- Enhancing natural and cultural landscape features through infrastructure siting and placement
- Eliminating exclusionary, unequal, and prejudiced energy practices

Final Thoughts

Take-Aways

- Infrastructure leaves a legacy over time and space
 - How can we enable people, animals, industries, and the environment to thrive alongside one another?
- Now is the time for innovation
 - How can our existing landscapes intersect with renewable energy infrastructure and the loads they serve?

What's next? • Quantifiable benefits under each

- pathway
 - Innovating policies and incentives to include non-traditional benefits
- Testing pathways in practice
- Virtual Regional Workshops
 - University of Arizona ✓ January 9th, 2023
 - University of Oregon ✓ January 10th-11th, 2023

Thank you

danielle.preziuso@pnnl.gov

Project Team and Collaborators Rebecca O'Neil (PNNL) Katie Arkema (PNNL, University of Washington) Yekang Ko (PNNL, University of Oregon) Nicholas Pevzner (University of Pennsylvania) Kirk Dimond (University of Arizona)

