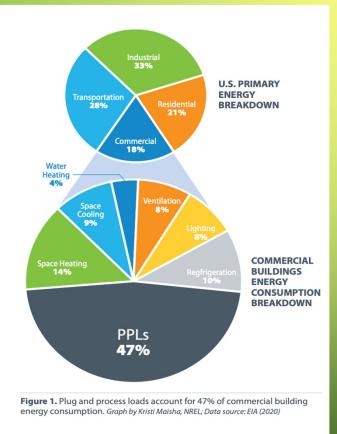
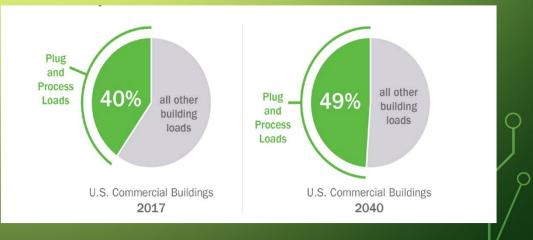
PLUG LOAD ENERGY EFFICIENCY CODES & STANDARDS: A POLICY REVIEW

PRESENTATION BY: KATIE GLADYCH

CALPLUG WORKSHOP SPRING 2023


APRIL 17, 2023

 \bigcirc

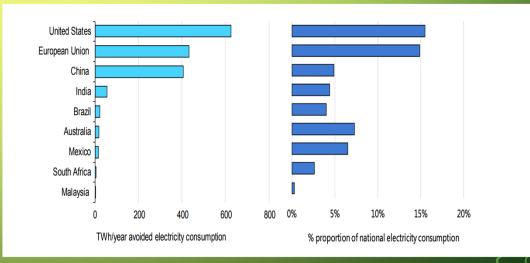

PLETICS PROJECT OVERVIEW

- Plug Load Energy Testing for Informing Codes and Standards
- Purpose:
 - Funded by California Energy Commission (CEC)
 - Assess opportunities for new CA codes and standards for products not currently included in state energy efficiency regulations (such as CA Titles 20 & 24)
 - Focused on three device categories: commercial imaging devices, residential networking equipment, and laboratory equipment
- Team:
 - California Energy Alliance (Prime)
 - CalPlug -- Commercial imaging devices
 - California State University Northridge (CSUN) Commercial laboratory equipment
 - California Lighting Technology Center (CLTC), UC Davis Residential networking devices

WHY PLUG LOAD CODES & STANDARDS?

- Increasing energy intensity as % of building load
- Individual energy consumption adds up!

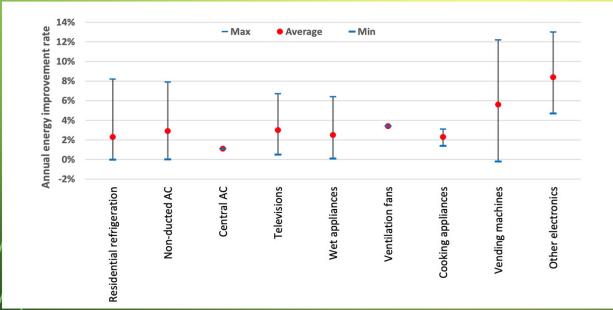
Data Source: EIA Annual Energy Outlook 2018 Report: R Langner and K Trenbath NREL 2019


 \bigcirc

WHY PLUG LOAD CODES & STANDARDS?

Simply: They work!

- Energy Efficiency Standards and Labeling (EES&L) Programs
 - Minimum Energy Performance Standards (MEPS)
 - Energy Labels
 - >120 countries worldwide
 - >100 appliances and equipment across residential, commercial, and industrial sectors
 - Advanced programs save up to 15% of their country's annual total electricity consumption


Annual Reduction in Electricity Consumption from EES&Ls

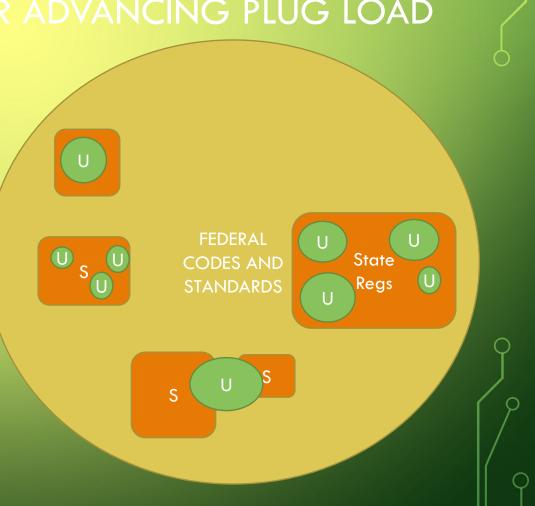
Source: International Energy Agency

WHY PLUG LOAD CODES & STANDARDS?

Annual Energy Reduction In New-Product Energy Consumption from EES&Ls

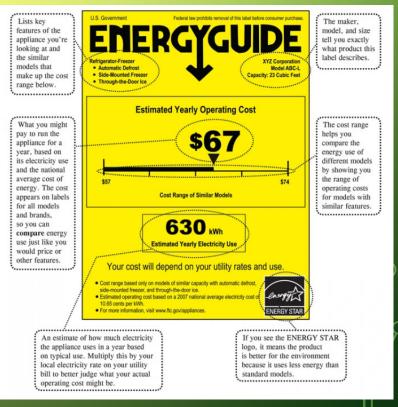
EES&Ls help spur energy efficiency in emerging tech

Advanced programs are attributed with reducing energy consumption by 8%/yr (and >50% over 20+ years)


Source: International Energy Agency

US POLICY CONTEXT FOR ADVANCING PLUG LOAD ENERGY SAVINGS

- Federal
 - Regulations
 - Voluntary agreements (Energy Star)
- States
 - Regulations (Ex. CA Title 20, SB 100)


0

- Rebate programs
- Policies mandate utility performance
- Utilities
 - Municipal or private entities implement incentive programs

US FEDERAL CODES & STANDARDS

- DOE Federal Appliance Standards (42 USC Sections 6302(a)(5), 6316(a), and 6316(b)(1))
- FTC Appliance Labeling Rule:
 - requires appliance manufacturers to put labels on refrigerators, freezers, dishwashers, clothes washers, water heaters, furnaces, boilers, central air conditioners, room air conditioners, heat pumps, and pool heaters
- ENERGY STAR Program (Voluntary)
- International professional organization standards (IEC, ANSI)

Source: Penn State College of Earth and Mineral Sciences

CALIFORNIA CODES & STANDARDS

SB 100: CA Renewables Standard

Plan for 100 percent of total retail sales of electricity in California to come from eligible renewable energy resources and zero-carbon resources by December 31, 2045.

Title 20: Appliance Energy Efficiency Standards

Minimum operating efficiency and costeffective measures for energy and water conservation

Requires more stringent
standards for many
federally-covered products

introduces standards for non-federally covered products

Device	Title 20 Requirement
Television	Enter standby mode after max. 15 min. of inactivity
Disc Players and Recorders:	3 W maximum power usage in standby-passive mode
Compact Audio Products	2 W maximum power usage in standby-passive mode (Or 4 W with permanent illuminated clock display)
Desktop Computers	Transition sleep mode or off mode within 30 min. of user inactivity Transition connected displays to sleep within 15 min.

CURRENT CODES & STANDARDS: COM. IMAGING EQUIPMENT Laser Printers: Energy Consumption and Market Data

Commercial Imaging Devices Codes & Standards

		5 5 5		
			Year last	
Name	Туре	Region/Country	updated	Devices covered
ENERGY STAR®	VA and	U.S., used in	2019	Printers, MFDs, scanners, digital
Product Specification	Test	multiple other		duplicators, mailing machines, and
for Imaging	Methodol	countries		professional imaging products
Equipment Eligibility	ogy			(industrial printers)
Criteria Version 3.1				
EPEAT Ecolabel	Label	U.S., used in	2017	Printers, MFDs
Conforms to: IEEE		multiple other		
Standard for		countries		
Environmental				
Assessment of				
Imaging Equipment				
Amendment 1				
Blue Angel	Label	European Union	2017	Products with printing as primary
The German Ecolabel				function; capable to print
Office Equipment				monochrome or color; and either
with Printing				inkjet (IJ) or electrophotographic
Function (Printers				(EP)/laser print deposition
and Multifunction				
Devices)				
,				
IEC 62301 Ed. 2.0	Standard	U.S., used in	2011	Electrical products with a rated
b:2011		multiple other		input voltage or voltage range
Household Electrical		countries		that lies wholly or partly in the
Appliances -				range 100V to 250V for single
Measurement of				phase products and 130V to
Standby Power				480V for other products
(measures standby				
only)				

Device Type - TEC Method (EP)	Speed/ Images per Minute (ipm)	UEC: TEC (kWh/yr) (Market Size (\$ Millions)	Compound Annual Growth Rate (CAGR) 2021-2026
Monochrome Non-MFD	s ≤ 20	< 20	39,208	3.6%
	20 < s ≤ 40	8.84 - 27.04	(All lasers)	(All lasers)
	40 < s ≤ 60	18.2 - 46.28		
	60 < s ≤ 135	37.44 - 47.84		
	s > 135	>900		
Monochrome MFD	s ≤ 20	<15		
	20 < s ≤ 40	9.88- 30.68		
	40 < s ≤ 60	20.8 - 49.92		
	$60 < s \le 80$	35.88 - 76.96		
Color Non-MFD	s > 80	75.4 - >100		
	s ≤ 20	17.68		
	$20 < s \le 40$	10.92 - 38.48		
	$40 < s \le 60$	22.88 - 45.76		
Color MFD	s > 60	> 452		
	s ≤ 20	9.88 - 10.4		
	20 < s ≤ 40	12.48 - 32.76		
	40 < s ≤ 60	23.92 - 50.44		
	60 < s ≤ 80	53.04- 447.2		
	s > 80	>500		

Inkjet Printers: Energy Consumption and Market Data

Monochrome Non- MFD 20-24 ipm 0.6- 0.9 13,854 (All inkjets) 3.3% (All inkjets) Monochrome MFD 20-24 ipm 0.6 - 1.1 (All inkjets) (All inkjets) Color Non-MFD 01-25 ipm 0.5 - 1.6 (All inkjets) (All inkjets) Color MFD 04-10 ipm 0.2 - 4.3 (All inkjets) (All inkjets)	Device Type	Speed (ipm)	UEC: Power in Sleep Mode (W)	Market Size Estimate 2026 (\$ millions)	CAGR 2021-2026	J
Color Non-MFD 01-25 ipm 0.5 - 1.6		20-24 ipm	0.6- 0.9	•		6
	Monochrome MFD	20-24 ipm	0.6 - 1.1			
Color MFD 04-10 ipm 0.2 - 4.3	Color Non-MFD	01-25 ipm	0.5 - 1.6			/
	Color MFD	04-10 ipm	0.2 - 4.3			

CURRENT CODES & STANDARDS: RESIDENTIAL NETWORKING EQUIPMENT

	Name ENERGY STAR Product Specification for SNE Version 1.0	Type VA and Test Methodology	Region/Country Open to North American, Taiwan, Europe, Australia, New Zealand, and Japan Market	Year last updated 2014	Device Types covered IAD, Routers, Modems, ONTs, Range Repeaters
	Voluntary Agreement for Ongoing Improvement of SNE	VA	United States	2020	IAD, Router, Modems, Range Repeaters
)	Code of Conduct on Energy Consumption of Broadband Equipment Version 7.0	Standard	European Union	2019	IAD, Routers, Modems, ONTs, Range Repeaters
	Canadian Voluntary Agreement for SNE	VA	Canada	2020	IAD, Router, Modems, Range Repeaters
	ANSI/CTA-2049	Standard, Test Methodology	No limitations	2020	IAD, Routers, Modems, ONTs, Range Repeaters

Residential Networking: Energy Consumption and Market Data

Device	UEC		Installed Base	CAGR
Integrated Access Dev	ices (IAD) 107	kWh/yr.	85 million	67% 2021-2025 (for 5G network equipment)
Modem (DSL)	54 k	κWh∕yr.	8 million	
Routers (wireless)	59 k	⟨Wh/yr.	53 million	
Range Extenders	23 k	⟨Wh/yr.	2 million	
Optical Network Term	inal (ONT) 142	kWh/yr.	6 million	

CURRENT CODES & STANDARDS: LABORATORY EQUIPMENT

Lab Equipment Codes & Standards ENERGY STAR Product Specification for Lab Freezers and Refrigerators V. 1.0

My Green Lab ACT Label for Autoclaves (TBD)

Lab Equipment: Energy Consumption and Market Data

Device	UEC	Installed Base	Market Share	CAGR
Floor Stand Autoclave	11,700 kWh/yr.	16,000 (Calif.)	99% of all autoclaves	7% 2020-2024 (Global general
Benchtop Centrifuge	91 kWh/yr.	76,000 (Calif.) 740,000 - 1.49 million (U.S.)	60% of all centrifuges	laboratory equipment market)
Benchtop Incubator	262 kWh/yr.	60,000 (Calif.) 560,000 - 1.1	25% of all incubators	
Floor Stand Incubator	3,723 kWh/yr.	million (U.S.)	75% of all incubators	
Water Bath	3,850 kWh/yr.	52,000 (Calif.) 440,000 - 890,000 (U.S.)	80% of all water baths	

PLETICS: NEXT STEPS

Final Test Approaches and Methodologies (Current Stage):

- Existing solutions Start with test methods of current codes and voluntary programs; best in class devices/features on market
- Power management / Low power modes (LPM)— how can LPM be used more efficiently; testing of real-world conditions
- Usage issues Best design and best user interface for efficient device operation; reduce wasteful usage patterns
- > Uncover solutions Discovery-mode approach, open to new insights revealed by testing

Device Procurement and Testing Phase (April 2023- July/Aug 2023)

Analyze results, estimate energy savings and non-energy benefits, and make final recommendations to CEC (July 2023 -- April 2024)

TAKE-AWAYS

Plug loads becoming a larger portion of commercial and residential building loads as other end uses (HVAC, luminaires) are already addressed for EE

Energy Efficiency Standards and Labeling Programs as a Solution

- Proven effective internationally in both saving energy/reducing carbon emissions, and spurring EE in emerging tech
- Federal and California standards as templates

Opportunities for new product categories

- Address issues such as LPM
- Encourage industry to continue making energy efficiency improvements for new tech

THANK YOU! QUESTIONS AND COMMENTS WELCOME

Katie Gladych Project Manager California Plug Load Research Center University of California, Irvine kgladych@uci.edu

