Future of Electrification

Caitlin Murphy

April 17, 2023
CalPlug Workshop Series #21

Study sponsored by U.S. DOE-EERE Office of Strategic Analysis
The Electrification Futures Study explored 5 crucial questions:

Load: How might electrification impact electricity demand and use patterns?

Capacity: How would the electricity system need to transform to meet changes in demand?

Operation: How would the system operate, with high levels of electrification, to meet reliability needs in 2050?

Flexibility: What role might demand-side flexibility play to support reliable operations?

Impacts: What are the potential costs, benefits, and impacts of widespread electrification?
• **Electrification**: the shift from any non-electric source of energy to electricity at the point of final consumption
 – Direct electric technologies only
 – Not exploring new sources of demand

• **Contiguous U.S. energy system**, including transportation, residential and commercial buildings, industry
 – Sectors cover **74% of primary energy in 2015**
 – Did not consider electrification of air transport, petroleum refining and mining, CHP, outdoor cooking
How might electrification impact electricity demand and use patterns?

Example for light-duty vehicles

Sales shares determined from a combination of expert judgment based on current trends & consumer choice models (e.g., NREL ADOPT model for LDVs)

EnergyPATHWAYS model used for stock rollover and detailed energy accounting

Principles: technology-rich assessment, bottom-up accounting, cross-sectoral breadth, national scope with state-level detail
Transportation electrification insights

- The greatest opportunities lie in **light-duty plug-in electric cars and trucks**, in part because fully electric vehicles accounted for <1% of the on-road LDV fleet in 2021
- **Electric freight trucks** can play a major role, particularly for short-haul applications and in more transformational scenarios
- **Transit buses** are prime candidates for electrification
- The High electrification scenario requires significant infrastructure investment, with 138,000 DCFC stations (447,000 plugs) and 10 million non-residential L2 plugs

Source: Mai et al. 2018
Vehicle electrification dominates incremental growth in *annual* electricity demand

Greater electricity consumption

Possibly higher, sharper, and more frequent peaks in 2050 (in the absence of demand flexibility)

Building electrification insights

- Electricity already powers a significant share of buildings end-use services.
- Electrification opportunities in buildings are most significant for **space and water heating**.
- Air-source **heat pumps** are the key buildings electrification technologies: electric equipment provides up to 61% of space heating, 52% of water heating, and 94% of cooking services in the combined commercial and residential building sectors by 2050 (**High** scenario).

Source: Mai et al. 2018
Electric space heating has the most pronounced impact on the timing and magnitude of peak demand.

Note: Summer = June-August, Fall = September-November, Winter = December-February, Spring = March-May
Demand growth drives the expansion of renewable energy resources, energy storage, and long-distance transmission capacity.

Murphy et al. (2021), https://www.nrel.gov/docs/fy21osti/72330.pdf
Demand growth drives the expansion of renewable energy and energy storage capacity.

- Solar: ~30-45 GW/yr
- Natural Gas: ~35 GW/yr
- Wind: ~20 GW/yr
- Even higher rates in some scenarios

Murphy et al. (2021), https://www.nrel.gov/docs/fy21osti/72330.pdf
Flexible loads provide value by mitigating power sector infrastructure needs, systems costs, and price volatility

Electrification Futures Study analysis indicates that flexible loads:

- **Reduce bulk electric system costs** in all scenarios
- **Mitigate** some electrification-induced **investments**
- **Reduce operational costs** by up to 10%
- Enhance the ability of electrification to decarbonize the energy sector by **reducing** VRE curtailment
- **Reduce price volatility**

Caveat: no incremental cost to implement load shifting considered

Value of Electric Vehicle Managed Charging

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Cost/Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce Bulk Power Systems Investment Costs</td>
<td>20–1350 $/EV/year</td>
</tr>
<tr>
<td>Reduce Bulk Power Systems Operating Costs</td>
<td>15–360 $/EV/year</td>
</tr>
<tr>
<td>Reduce Renewable Energy Curtailment</td>
<td>23–2400 kWh/EV/year</td>
</tr>
<tr>
<td>Reduce Distribution Systems Investment Costs</td>
<td>5–1090 $/EV/year</td>
</tr>
<tr>
<td>Increase Distribution Systems EV Hosting Capacity</td>
<td>30–450%</td>
</tr>
</tbody>
</table>

Anwar et al., 2021. “Assessing the value of electric vehicle managed charging: a review of methodologies and results.” *Energy & Environmental Science*
Available EFS Resources and Results

Technology cost and performance (December 2017)
Demand-side adoption scenarios (June 2018)
dsgrid model documentation (August 2018)
Methodological approaches (July 2020)
Supply-side evolution scenarios (January 2021)
Power system operation with flexible loads (May 2021)

Study sponsored by U.S. DOE-EERE Office of Strategic Programs
Helping communities visualize energy futures through 2050

How can various energy strategies help my community achieve our energy goals?
• Build, view, and compare pre-defined future energy scenarios and their associated costs, emissions, and consumption levels
• Explore energy supply and demand scenarios at very high spatial resolution.

How do system cost and emission impacts of various energy strategies compare?
• See energy and carbon emissions implications of electricity decarbonization, building and transportation electrification, and (soon) energy efficiency scenarios down to the county level
• Model how combining strategies can result in emissions and cost reduction tradeoffs or synergies.

maps.nrel.gov/slope/scenarios
Scenario Planner Unique Features

INTEGRATION OF MODELS AND ANALYSES
Leverages and integrates state-of-the-art NREL tools and impactful analyses.

FLEXIBLE SCENARIO OPTIONS
Presents energy, emissions, and economic metrics for a wide range of options for energy transformation.

SECTORAL INTERACTIONS
Captures how energy demand and supply sectors interact and respond to key strategies such as widespread electrification.

LOCALIZED RESULTS
Translates the results of impactful national studies to the local level for community decision makers.

ACCESSIBLE USER INTERFACE
Presents complex scenario results in an accessible way for a wide range of decision makers to use and share.
Scenario Planner: Analysis Architecture

Key Sources

- U.S. Energy Information Administration Data
 - Natural Gas Demand (Annual)
 - Electricity Demand (Hourly/Annual)
 - Other Fuels

- Electrification Futures Study
 - Electrification Levels (EnergyPATHWAYS)

- NREL Models
 - ResStock*
 - ComStock
 - TEMPO

- Scenario Planner Strategies from Standard Scenarios
 - Grid Decarbonization Trajectories (ReEDS, dGen)*
 - Transmission Expansion Availability (ReEDS)*

SLOPE Scenario Planner

- Outcomes for 25 Unique Scenario Strategy Combinations
 - County-level energy consumption through 2050
 - County-level CO2 emissions through 2050
 - State-level system cost impacts through 2050
 - Annual, State-Level Planning Metrics

*Previous R&D 100 winners

Represents 74% of U.S. primary energy demand in 2015
Explore Supply and Demand Scenarios across Energy System Metrics

Location
Search for a state or county
Sarasota, FL County

Energy System Metrics
- Energy Consumption
- CO₂ Emissions
- System Costs (state only)

Scenario Selections
Electricity Supply Scenarios
- Reference Case
- 95% grid decarbonization by 2035
- 95% grid decarbonization by 2050
- Transmission Constraints

Energy Demand Scenarios
Level of Electrification
- Reference
- Medium
- High

Level of Building Energy Efficiency
(Coming April 2022)
- Reference
- High

Level of Demand-Side Flexibility
- Reference
- Enhanced
The Scenario Planner delivers planning metrics to inform next steps for clean energy transitions

Scenario 1: Reference Case

CO₂ Emissions - Sarasota, Florida

<table>
<thead>
<tr>
<th>Details for Year 2045</th>
<th>Residential</th>
<th>Commercial</th>
<th>Industrial</th>
<th>Transportation</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity - CO₂ Million Metric Tons (MMT)</td>
<td>0.7101</td>
<td>0.6146</td>
<td>0.1628</td>
<td>0.04207</td>
<td>1.530</td>
</tr>
<tr>
<td>Non-Electricity - CO₂ Million Metric Tons (MMT)</td>
<td>0.1202</td>
<td>0.1357</td>
<td>0.1732</td>
<td>2.356</td>
<td>2.803</td>
</tr>
<tr>
<td>Total - CO₂ Million Metric Tons (MMT)</td>
<td>0.8303</td>
<td>0.7683</td>
<td>0.3360</td>
<td>2.398</td>
<td>4.332</td>
</tr>
</tbody>
</table>

Planning Metrics
State-level data only

- Share of Space Heating Services Supplied by Electricity (%): 46.81%
- BEV and PHEV Share of Light-Duty Vehicles (%): 10.97%
- Share of Electricity Provided by Renewable Energy (%): 28.80%
- Reduction in Energy-Related CO₂ Emissions from 2005 (%): 22.55%
- Net Change in System Cost from Reference Scenario (Billions 2020 $): $0.00

Scenario 2: 95% Grid Decarbonization by 2050 & Widespread Electrification

CO₂ Emissions - Sarasota, Florida

<table>
<thead>
<tr>
<th>Details for Year 2045</th>
<th>Residential</th>
<th>Commercial</th>
<th>Industrial</th>
<th>Transportation</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity - CO₂ Million Metric Tons (MMT)</td>
<td>0.2055</td>
<td>0.2016</td>
<td>0.05046</td>
<td>0.1621</td>
<td>0.6196</td>
</tr>
<tr>
<td>Non-Electricity - CO₂ Million Metric Tons (MMT)</td>
<td>0.07491</td>
<td>0.1059</td>
<td>0.1732</td>
<td>0.9175</td>
<td>1.272</td>
</tr>
<tr>
<td>Total - CO₂ Million Metric Tons (MMT)</td>
<td>0.2804</td>
<td>0.3075</td>
<td>0.2236</td>
<td>1.080</td>
<td>1.891</td>
</tr>
</tbody>
</table>

Planning Metrics
State-level data only

- Share of Space Heating Services Supplied by Electricity (%): 80.25%
- BEV and PHEV Share of Light-Duty Vehicles (%): 75.54%
- Share of Electricity Provided by Renewable Energy (%): 72.05%
- Reduction in Energy-Related CO₂ Emissions from 2005 (%): 65.89%
- Net Change in System Cost from Reference Scenario (Billions 2020 $): -$3.217
Scenario Planner reveals for the first time changes in state-level system costs, including investment and savings tradeoffs.

Scenario 2: 95% Grid Decarbonization by 2050 & Widespread Electrification

Change in System Costs Relative to Reference Scenario (Billions of 2020$) - Florida

Data Filters
- Electricity Supply: T&D (Wires)
- Demand: Fuel Consumption and O&M
- Electricity Supply: Fuel and O&M
- Net System Cost
- Demand: Equipment Capital
- Demand: Fuel Infrastructure
- Electricity Supply: Generation and Storage
Thank you!

caitlin.murphy@nrel.gov

www.nrel.gov

NREL/PR-6A20-85911