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Background and Motivation

q Exponential growth in global PEV sales:
q EV sales exceeded 10 million in 2022
q EV share is more than tripled in three years, from 4% in 

2020 to 14% in 2022
q ~14 million in sales by the end of 2023, representing ~18% 

of total car sales

q Charging is a major concern for potential PEV buyers:
q Recent survey shows that 6 in 10 Americans who aren’t 

yet sold on PEVs were concerned about where and 
when they would charge (61%) and how far that charge 
will take them (55%), i.e., “range anxiety”. 

q Early charging patterns are home- dominant (>80% of 
charging) but many future PEV owners may not have 
access to a home charger.
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Background and Motivation

q EV charging a priority for federal government:
q By 2030, 50% of LDV sales as ZEV, 500,000 PEV chargers
q 2021 Bipartisan Infrastructure law includes $7.5 billion to build out 

a national network of EV chargers
q 2022 Inflation Reduction Act provides federal tax credits for EV 

infrastructure, EV purchases, and domestic mining and 
manufacturing.

Major Uncertainty: EV charging 
infrastructure requirements are hard to 
predict over time; challenging to plan for…

Our Solution: Data-driven EV charging 
demand modeling and charging 
infrastructure planning 
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Data-Driven EV Charging Demand Modeling

qPassenger EVs:
q National Household Travel Survey (NHTS) data
q Real-world connected vehicle trip data
q Land use data
q Vehicle registration and EV adoption prediction

qElectric Transit Buses:
q General Transit Feed Specification (GTFS) data
q Electric bus deployment prediction
q Energy consumption prediction
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Passenger EVs

1. Trip Data Acquisition & 
Preprocessing

Representative LDV travel data for 
region(s) of study is joined with 
geographically determined locational 
characteristics obtained from multiple 
data sources.

2. EV Adoption Modeling
For a given analysis year (2040), assign 
PEVs to households by vehicle model 
(battery size, ECR, & max kW 
acceptance required for simulation).

3. Travel Itinerary Synthesis
Vehicle trips from data aggregators 
typically do not contain persistent 
vehicle identifiers enabling analysis of 
multi-trip travel itineraries. Thus, an 
approach for generating synthetic 
travel itineraries is leveraged.

4. EV Charging Simulation
EV charging is simulated for synthetic 
travel itineraries considering: 1) EV 
adoption assumptions; 2) charging 
behaviors and location-specific EVSE 
availability; 3) home charging access 
assumptions.

5. EV Load Profile Generation
Charging demand for a given analysis 
year (2040) is assigned to specific 
locations (i.e., land parcels) by location 
type.
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Passenger EVs

Real-World Driving Data Set:
q Vehicle trips data acquired from Wejo for two months in 

the state of Virginia.
q ~3% of passenger vehicle population
q September 2021 and February 2022
q Richmond, VA and Newport News, VA regions

q Trip O/Ds joined to land use data to infer trip purpose.

Geographic scope: 
VA statewide

VA: Workplaces

VA: Retail & Recreation
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Temporal scope: 
September 2021 (summer)
February 2022 (winter)

Google
COVID-19 Community Mobility Reports

Newport News, VA Newport News, VA

Population (Census) Land Parcel Use

Richmond, VA Richmond, VA

Region Sep. Trips Feb. Trips Sep. VMT Feb. VMT

Newport 
News, VA:

Newport News
Hampton

York county
James City county

920k 720k 4.3M 3.3M

Richmond, VA:
Richmond

Henrico county
Chesterfield county

Hanover county

1.5M 1.3M 8.9M 7.2M

Regional Trip Data Summaries:



7

Passenger EVs

EV Adoption Modeling – NREL TEMPO Model: 
q TEMPO is an all-inclusive transport demand model that projects 

household-level vehicle ownership and technology choices based 
on heterogenous consumer preferences.

q 2040 aggressive passenger EV adoption scenario assumes:
q 50% national PEV sales by 2030

q 100% national PEV sales by 2035

q TEMPO adoption outputs mapped to BEV/PHEV archetype vehicles
q established for previous DOE projects

TEMPO

Map TEMPO PEV 
adoption to archetype 
vehicles for charging 

simulation

PEVs ~52% 
statewide stock

Veh. Gen. Vehicle Type EV Range 
(mi.)

ECR 
(Wh/mi.)

DC Charge 
Accept. (kW)

2040 NN fleet 
share (%)

2040 Rich fleet 
share (%)

Gen 3
BEV SUV/truck 300 475 575 37.5% 39.5%

BEV midsize car 300 325 400 7.8% 6.3%

Gen 2

BEV SUV/truck 250 475 350 10.8% 13.5%

BEV midsize car 300 325 300 3.5% 3.7%

BEV compact car 150 300 150 19.7% 17.8%

Gen 1

BEV SUV/truck 200 475 150 1.3% 2.2%

BEV midsize car 275 300 150 0.6% 0.7%

PHEV SUV/truck 50 475 N/A 10.8% 9.7%

PHEV midsize car 50 310 N/A 3.2% 2.4%

Gen 0
BEV compact car 150 300 50 0.5% 0.8%

PHEV midsize car 20 250 N/A 4.3% 3.2%

202k 
passenger EVs

470k 
passenger EVs

https://www.nrel.gov/transportation/tempo-model.html

TEMPO Modeling Diagram

Archetype Vehicles for Simulation:

https://www.nrel.gov/transportation/tempo-model.html
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Passenger EVs

Synthetic Vehicle Travel Itineraries:
q Wejo travel data contained unlinked trips with no persistent vehicle identifier, thus a procedure for generating synthetic 

travel itineraries (through trip chaining) was leveraged.

q Locational dwell distributions (from 2017 NHTS) are used to infer vehicle dwells at each stop. Trips are chained based 
on spatiotemporal alignment of trip origins and destinations (+ dwell).

q Synthetic vehicle travel itineraries are validated against 2017 NHTS vehicle trip distributions.

cbg 4

cbg 1
cbg 2

cbg 3

Example trip chain

Validation plots:
ZEP = synth veh itineraries
NHTS = ground truth
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Passenger EVs

EV Charging Simulation – NREL EVI-Pro Model:
q EVI-Pro takes EV adoption and travel demand data and 

simulates EV charging behaviors, energy demands, and 
infrastructure requirements.

q For this study, EV drivers are assumed to prioritize home 
charging, followed by workplace and public slow charging 
(supported by real-world charging data).

q Home charging access is derived from previous modeling, 
72% for the study region in 2040 scenario.

q 1-week charging demands are produced.

EVI-Pro

Home Work Public
L2

Public
DCFC

> > >

EVI-Pro ordered charge preference:

drivers prefer to destination charge during long 
dwell periods, maximizing opportunities for SCM...

EVI-Pro Modeling Diagram

https://www.nrel.gov/transportation/evi-pro.html

https://www.nrel.gov/docs/fy22osti/81065.pdf
https://www.nrel.gov/transportation/evi-pro.html
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Passenger EVs

EV Load Profiles:
q EV charging demand is combined from two sources:

q Intra-regional charging demand is determined from EVI-Pro simulations

q Inter-regional charging demand is determined by separately simulating charging for long-
distance trips (>100-mi.) that end within the region of interest.

q EV charging events are assigned spatial coordinates depending on their 
location type:
q Home charging locations = EV adoption projections + residential land use data.
q Workplace charging locations = census tract of charging demand + 

commercial land use data.
q Public charging locations = census tract of charging demand + commercial 

land use data.

q EV charging events can be assigned to individual stations depending on 
EVSE type(s), station size, and port utilization assumptions. 

Intra-
Regional 
Charging 
Demand

Inter-
Regional 
Charging 
Demand

Combined Regional 
Charging Demand

EVI-Pro
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Passenger EVs

Complete Modeling Framework:

Analysis 
Year

Vehicle 
Types

Owner 
Types

Wejo Trips 
Data 

(~3% of LDV 
travel)

Subspace 
Data (cbg)

Grid Analysis

Land Use 
Data

INPUT DATA PROCESSING

RESULTINTERMEDIATE 
DATA

EVI-ZEP
synthetic travel 

itineraries

EVI-Park
Join trip O-Ds 
to locations

EVI-Pro
charging 
demand

Survey Data 
(NHTS)

Charging 
Strategies

Charging 
Demand 
Database

Caldera/ 
EVI-EnSite

EV home 
locations

Home Charging 
(NPLH)

TEMPO
EV adoption

• Park location
• Park start time
• Park end time
• Park start SOC
• Park end SOC
• Vehicle Type
• Charger Type

Outcome of this modeling
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Electric Buses

q GTFS-based transit bus system analysis
q Transit system has relatively fixed routes and timetables, and its depot and terminal locations are known 

Route shapes RouteE Map 
matching

TomTom 
road 

network

Trip 
energy

Trained 
RouteE 

bus models

Trip sequence

Stop times

Bus daily 
itinerary

Charging 
Simulation 

Depot and on-
route charging 

facilities 

Charging 
strategies

Charging 
Demand 
Database

INPUT 
DATA PROCESSING

RESULTINTERMEDIA
TE DATA
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Electric Buses

Real-World Transit System Data:
q GTFS, General Transit Feed Specification or Google Transit Feed Specification, defines a 

common format for public transportation schedules and associated geographic information.
q A series of standardized, text files that can be easily shared, read, and used by anyone
q Contains all information relating to the fixed schedules
q Geospatial and scheduling information from “shapes”, “trips”, “stops”, and “stop times” files.
q Depot locations are from the National Transit Database (NTD) 
q Deadhead trips from and to the depot and between trips are based on shortest path algorithm
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Electric Buses

Hampton Roads Transit

Williamsburg Area Transit 
Authority
Greater Richmond 
Transit Company

Transit 
Agency

Fleet Size Routes Weekday 
Blocks

Saturday 
Blocks

Sunday 
Blocks

WATA 20 13 20 12 10

GRTC 142 38 110 81 63

HRT 294 71 293 236 136

q Transit agencies:
q Williamsburg Area Transit 

Authority (WATA)
q Greater Richmond Transit 

Company (GRTC) 
q Hampton Roads Transit (HRT)
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Electric Buses

qAssumptions:
q Two electric bus options from Proterra

q Simulation logic:

• Depot charging > terminal charging

• Smaller battery is better
• Lower charging power is better

Model Battery
(kWh)

Efficiency 
(kWh/mi)

Range
(mi)

Charging 
power (kW)

ZX5 + 40-feet 492 1.8-2.5 160-240 150/180/450

ZX5 MAX 40-feet 738 1.9-2.8 220-340 150/180/450
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Electric Buses

Transit 
Agency

Depot Charging Energy (kWh) Terminal Charging Energy (kWh)
Weekday Saturday Sunday Weekday Saturday Sunday

WATA 13358 11578 7363 1610 1638 959
GRTC 36191 35125 21586 38552 25276 26349
HRT 117661 95267 52395 53124 49787 25648

Transit 
Agency

Depot Charging Energy (kWh) Terminal Charging Energy (kWh)
Weekday Saturday Sunday Weekday Saturday Sunday

WATA 10647 9178 5883 1610 1638 959
GRTC 27266 27400 15395 34189 22263 24018
HRT 93914 74787 41923 46507 44506 22245

Winter Charging Energy

Summer Charging Energy
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Electric Buses
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Electric Buses

Weekday Saturday

Sunday

Daily Charging Energy Needs for Opportunity Charging All Agency- Winter
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Electric Buses

R-Shiny Based User-Friendly Dashboard
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Next Steps and Key Challenges

q Private vehicles:
q Higher resolution: more high-quality data
q Higher fidelity: refine assumptions around EV user behaviors
q Challenges: data availability and privacy issue

q Medium/Heavy duty vehicles:
q Many vehicle types and heterogenous vocational usage patterns.
q Limited public or commercial data sets capturing the full extent of M/HD operations.
q High uncertainty around technology adoption and timing.
q M/HD charging models/approaches are less mature than for passenger vehicles.



Thank you!


