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Motivation

The path of clean energy is clear

* Achieve 100% carbon pollution-free electricity
by 2035
* Achieve net-zero carbon emissions by 2050

Building sectors account for 40% of energy use
and associated greenhouse gas (GHG)

emissions in the US.

Key: Decarbonation and electrification of buildings
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Background: energy demand

End-use consumption shares by type of U.S. home, 2020

arores T = I -

0% 20% 40% 60% 80% 100%
@ space heating air conditioning @ water heating @ lighting
refrigeration @ all other

Data source: U.S. Energy Information Administration, 2020 Residential Energy Consumption Survey

/’," Mote: Shares are a percentage of annual site energy consumption. Site energy consumption excludes the losses in
€la’ electricity generation and delivery.

Most building energy
consumption is used for
space conditioning to
provide a comfortable
thermal environment
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Background: energy demand

U.S. residential sector electricity . . . .
consumption by major end uses, Top 4 electricity consumption in

2022 residential buildings:
1. Spacing cooling
2. Spacing heating
3. Water heating
/‘ 4. Refrigeration

@ space cooling More than 50% of electricity consumption in

- buildings is to meet thermal loads.

® iighting Easy to shift!!

@ televisions and related equipment
@ computers and related equipment
@ all other uses
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Background: energy supply

U.S. electricity generation by select technologies for all cases /'ﬂ
billion kilowatthours €ia
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Data source: U.S. Energy Information Administration, Annual Energy Outlook 2023 (AEOQ2023)
Note: Shaded regions represent maximum and minimum values for each projection year across the AEO2023 Reference case and side cases. Ref=Reference case.
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Energy demand vs. supply

Comparison of hourly energy consumption
and supply by renewables

v Renewables
AN (solar+wind)

Base supply
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Peak Energy Demand
in the Evening

Supply and Demand
Mismatch

Solution:
Thermal Energy Storage
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Energy demand vs. supply

Thermal Energy Charge of TES:
Storage (TES) * Energy supply > Energy demand
* During off-peak hours or when
) renewable energy is excessive
/gpXge \S\ TES
/| Energy |\ Discharge
TES ' Geherattidp SN . .
Discharge \ Discharge of TES:
\ * Energy supply < Energy
N L demand
* During peak hours

>
0O 2 4 6 8 10 12 14 16 18 20 22 24

Hour of the day

!
-:__'_1_4 ifornia Institute ”Q\\ <:AI
for Telecommunications .
_ _ California Plug Load Research Center
and Information Technelogy University of California, Irvine



Why thermal energy storage?
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* Provide long-term energy storage
solution with high storage capacity

* Mitigating intermittency of renewable
energy sources

* Operation flexibility (take advantage
of low energy rates and reduce peak
demand)

e Lower cost alternative than electric
batteries

* Directly improve thermal comfort of
occupants
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Types of TES technology

Sensible Heat Latent Heat Thermochemical
Storage Storage Storage
|

Type of Solid | | Liquid = Phase change Chemical
storage : : :
media: media media material Compound

_________ s G
Energy i Energy stored by i i Energy stored in i i Energy stored in i
storage i directly increasing ' i latent heat during i i enthalpy through i
approach: . media ' phase transition of . reversible chemical |

'temperature .1 media 'reactions '
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Key research focus of TES

Lehigh Concrete Thermal Energy Storage System

* Optimization and
manufacturing of storage
materials

M

Coal Boiler

* Modeling and analysis

Thermal Energy Storage with Lehigh Thermal Batteries
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 System optimization and
integration

e Commercialization

Off Peak Electricity J

/Il

Natural Gas HRSG @

Heat Transported to
Application site

<mmm Heat Transfer Fluid

Nuclear
Reactor 4= steam Electricit
dmmm Flue Gas <mmm Water

Basic elements
Storage media: Concrete cylinders/blocks
Heat exchanger: Thermosiphon
Heat transfer fluid
Heating source: High-temperature air
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Key research focus of TES

Optimization and manufacturing of storage materials

How could storage media effect performance of TES?

[ Storage capacity J {Efficiencyofdischarging}

Governing dT
equation: Estoreq = Cp - m - dT(+Ah - m) Qconduction = —k A - E

>

Governing Specific heat Thermal
material property: (and latent heat) conductivity
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Key research focus of TES

Optimization and manufacturing of storage materials

(Example: material characterization of concrete
as storage media for sensible heat storage)

Study matrix with different concrete constituents
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Key research focus of TES

Modeling and analysis

* Establish thermal modeling to predict TES performance with different scales and materials,
under different operating conditions

* Develop numerical tools to predict benefits of TES implementation and integration with
renewable energy sources.
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Key research focus of TES

System optimization and integration -] C - e

« Scale up ability to fabricate and e y
manufacture materials and components. sy |

 Develop cost-effective configurations for ) i{; \\
simpler TES integration in building and —pam— LN U
industrial applications. :": \ O N

Volum Operation Charge + Actual Energy Charge % Energy Charge Rate
e Range Discharge Storage density (kWh,,/m3-hr)
(m?3) (°C) Duration (hour) (kWh,,) (kWh,, /m3)
2kWh,,, TC-TES 0.0264 300-380 4+6 1.584 79.2 60.00 .
10kWh,, TC-TES 0.2088 220-340 6+4 10.070 100.7 48.23 8.04
150kWh,,, TC-TES 0.9057 210-380 10+ 6 137.506 91.7 151.83 15.13
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Key research focus of TES

System optimization and integration: On-site TES in buildings
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Key research focus of TES

System optimization and integration: On-site TES in buildings
(Example: Concrete energy column - an active TES system)

Heat pump efficiency |mprovement
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Key research focus of TES

Commercialization
Develop a strategic plan that will enable commercial success for TES products and
systems.

* |dentify pathways to scale the adoption of equitable and clean TES systems in
buildings.

* |dentify market and policy barriers to allow for an equitable adoption of building
storage technologies in all communities.

 Understand current codes and standards and determine needs to optimize the
storage technologies to enable their safe adoption in buildings.
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Research barriers on TES in buildings

* Cost

Expensive PCMs, integration cost into building sectors

* Material discovery

Characterization on current materials, design of novel (PCM) materials

* Integration

Adequate space in buildings, other form of renewables

 Operation

The operation of TES can only be seasonal, or be limited in a narrow temperature range.
* Round-trip efficiency

Ensure no extra energy lost or gained from the ambient

* Lifetime

Material degradation, appropriate maintenance protocols

* Testing and design standards

Testing protocols and design standards to increase adoption of the technologies
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Questions and comments are welcomed

Shuoyu Arnold Wang, PhD
Postdoctoral scholar

California Plug Load Research Center
University of California, Irvine
shuoyuw@uci.edu
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