
Dynamic Distributed Computing for
Autonomous Vehicles in 5G Infrastructures

Marco Levorato
Professor

CS - University of California, Irvine
levorato@uci.edu

Earth Day Workshop 2024

Marco Levorato
Professor
University of California, Irvine
Computer Science Dept.

Ph.D - Telecommunication Engineering

PostDoc - Electrical Engineering

Faculty - Computer Science

University’ degli Studi di Padova (Italy)

Stanford University
University of Southern California

University of California, Irvine

Intelligent and
Autonomous Systems Lab

Marco Levorato
Professor
University of California, Irvine
Computer Science Dept.

Mobile HealthCare

Autonomous cars Autonomous drones

Smart manufacturing

Collaborative robots

Augmented Reality

Dynamic, Distributed and Resilient Computing
for Extreme Mobile Applications

Funded by

Mobile HealthCare

Autonomous cars Autonomous drones

Smart manufacturing

Collaborative robots

Augmented Reality

Mismatch between computing needs (e.g., continuous stream of complex
computing tasks), requirements (accuracy, latency) and resource
availability (energy, computing power)

Challenge

Dynamic, Distributed and Resilient Computing
for Extreme Mobile Applications

Multi-Faceted Challenge

Algorithm level
Split, dynamic, multi-branched models
designed for efficiency and and
distributed execution

Original Model

Head
Model

Encoder

Modified Model

Tail Model

“Bottleneck”
Splitting

Point

Edge

High
Resolution

Image

Mobile
Device

Head Model
(Mobile Device)

Tail Model
(Edge Device)

Wireless
Channel

Inference
Output

(1) (2)

(3)

(4)

(5)
(6)

(7)

Decoder

Compressed
Representation

Device-level
Context-aware computing strategies
and semant ic communicat ion
strategies

Infrastructure-level
AI for semantic network and edge
slicing, generalization and knowledge
accumulation

adopted wireless technologies in the present world, it is also
a viable choice for reliable task offloading. Modern Wi-
Fi system relies on multi-user multiple-input multiple-output
(MU-MIMO) system to transmit data to multiple stations
(STAs) simultaneously. The Access Point (AP)–integrated with
mobile edge device (MED) communicate simultaneously with
multiple STAs reliably and efficiently leveraging beamform-
ing through steering multiple transmission streams[2]. Wi-Fi
adopts orthogonal frequency-division multiplexing (OFDM)
to allow transmission in K partially overlapping orthogonal
sub-channels. The input bits are organized into groups–termed
as OFDM samples, each group containing a certain number
of bits. K number of such OFDM samples ak are grouped
into OFDM symbols a = [a�k/2,, a(k/2)�1] [3], [4]. The
digitally modulated symbols are simultaneously transmitted
over K number of sub-channels.

stx(t) = e
j2⇡fct

(K/2)�1X

�K/2

ake
j2⇡kt/T (1)

Equation 1 represents the transmitted signal whereas, fc

is the carrier frequency and T = 1/(�f) is the symbol
time with �f being the sub-channel spacing. To improve
the signal quality, the transmitter performs beamforming to
steer the transmission streams toward the intended receiver.
To perform the beamforming, multiple signal streams are
combined at the transmitter through steering weights W. W
is derived from the channel frequency response (CFR) matrix
H which is estimated for every OFDM sub-channels. The
obtained H is of the dimension of K⇥M⇥N where M and
N are the number of transmit and receive antennas. At the
receiver (beamformee), the beamformed signals are retrieved
from the fact that [H]l,i ⇥ [W]l,i = 0 where l 6= l or
i 6= i. Fig. 2 presents a 4 ⇥ 3 MU-MIMO system where AP
(beamformer) with 4 antennas transmitting to two different
STAs: STA A and STA B, having two and one receive
antennas enabled respectively. The transmission signal stx(t)
from the beamformer bounces off different physical objects
of the environment and P different copies of the signal are
received by the beamformees (STA A and STA B). If the
signal is transmitted from m 2 {0, 1, ...M � 1} antennas and
received by n 2 {0, 1, ...N � 1} antennas the CFR matrix H

is represented equation 2 where Ap and ⌧p are the attenuation
and delay experienced by path P.

Hk(n) = Ak(n)e
j�k(n)

=
P�1X

P=0

Ap(n)e
�j2⇡(fc+k/T)⌧p(n)

(2)

The beamformer (AP) derives W from the H matrix to steer
the transmission streams to enhance the power towards single
or multiple beamformees (STA) simultaneously. This helps to
improve the signal strength, resulting in improving the data
rate and the transmission delay. Another benefit of MU-MIMO
offloading is that the limited capacity of any server (STA) does

TX of AP (MED)

RX of STA
A

RX of STA
B

W11

W12

W13W21

W22

W23W31

W32

W33W41

W42

W43S1 S2 S3

H11

H21H31

H12

H22

H32

H13

H14

H23

H33

H24

H34

Fig. 2: Example of a 4⇥3 MU-MIMO system.

not degrade the overall network performance significantly as
it can offload to multiple servers simultaneously.

The overall link quality including transmission data rate,
packet drop, and transmission latency depends on the number
of transmissions and reception streams, available bandwidth,
and the number of STAs [5]. We present the preliminary results
on Note that, a higher number of transmission streams and
higher bandwidth increases the power consumption signifi-
cantly which causes the system to drain out faster hampering
the energy efficiency of the whole system badly[6]. Thus
it is very important to configure the MU-MIMO system
semantically to maintain reliable communication links and
optimize energy consumption simultaneously. However, both
(i) the abrupt change of the wireless channel due to the

erratic movements of the MEDs and (ii) the variations in

the time-criticality and reliability of the applications make it

very challenging to configure MU-MIMO system semantically.

Further details on problem formulation are presented in section
III-A.

On the contrary, an unreliable, unoptimized wireless link
that is non-adaptable to the requirements of the age of in-
formation (AoI) of the metaverse tasks leads to packet loss
from the offloaded data. The lost information in the offloaded
data hampers the granularity of the information and sometimes
corrupts the data completely. Thus it is important to evaluate
how packet (data) loss might affect different metaverse tasks.

A. Metaverse tasks performance with packet loss

To demonstrate, how the packet loss might hamper the
metaverse tasks, we consider two popular computer vision
tasks– (i) object detection and (ii) instance segmentation.

1) Object detection with packet loss: In object detection, a
model identifies objects of interest within an image and draws
bounding boxes around them. The intersection over union
(IoU) measures the extent of overlap between the predicted
bounding boxes and the ground truth (actual) bounding boxes.

2

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

where LTx, LRx, ETx, and ERx are the transmission laten-
cies and energy consumption in the uplink and downlink. �
represents a random function for the additional abrupt delays
that can be experienced due to a variety of factors including
a packet’s round-trip propagation delay, LRT (influenced by
delicate factors like motion characteristics or the line of sight
between an AS and the server), and the queuing delays at the
server, Lqueue. If the sizes of the respective transmitted and
received data are given by a and b, we obtain:

LTx =
a

�u

, ETx = PTx · LTx (5)

LRx =
b

�d

, ERx = PRx · LRx (6)

in which �u, �d, PTx, and PRx are the data rates and
transmission power estimates at the local platform during
upload and download, respectively. With these performance
estimates defined, multiple execution strategies, M , can be
supported for edge computing – comprising at least the basic
local and remote execution modes [4]. Depending on the ter-
mination point (e.g., early or full exit) and whether execution
is performed locally or remotely, each m 2 M can possess
its own unique execution path and performance overhead, and
thus the energy optimization objective for every time window
of duration T can be given by:

min
m2M

Em

total
, s.t. Lm

total
<= T, �precm < precth (7)

where the goal is to identify an optimal edge computing
operational mode that provides the lowest energy footprint
as defined in (2), subject to a reliability constraint governed
by the total execution latency condition, and a robustness
constraint ensuring that any selected mode should not degrade
the task’s precision score metric (e.g., accuracy) by more than
a predetermined threshold, precth (from a reference baseline).

Modeling fail-safe offloading: As mentioned, offloading
strategies for the latency-critical AS applications employ a
fail-safe routine, mostly triggering local execution if server
responses in the corresponding time window are perceived to
peak beyond a critical threshold, defining Lexec from (1) as:

Lexec =

(
LH , if LH + Lcomm + Lser < T � LFS

LH + LFS , otherwise
(8)

where LH is the execution latency for the head portion of a
model on the local platform prior to offloading whereas LFS

is the execution latency component for the fail-safe. Currently,
fail-safe invocations are perceived as sporadic occurrences.
However, we contend that the randomness induced by � in
(3) introduces an uncertainty dimension to the estimation of
Lcomm, possibly leading to a persistent evaluation of Lexec

in (8) to the second case, causing unintended performance
overheads if not properly considered.

TESTUDO aims to remedy this deficiency by actively con-
sidering the impact of the offloading fail-safe invocation fre-
quencies on the overall performance to guide both the design
and deployment stages of the edge computing solution. In
Figure 2, we depict an instance of the final system model
rendered with execution blocks distributed between the local
platform and the edge server, supporting multiple potential
operational modes that instigate the need for a learning-based
approach for solving (7). More details are provided on the
design and functionality of each component in the next section.

Local Platform

Tx

Edge Server

்ܯ
ி௨௟௟ Full Tail

்ܯ
ி௨௟௟ Full Tailܯ஽

ாܯ஽ܯ

Control Unit
Rx

Input

receive control values

Transmit compressed data

்ܯ
ா௫ Exit Tail

Fig. 2. An example end-to-end control system architecture rendered through
TESTUDO supporting reliable edge computing for autonomous systems.
Offloading point is placed following the ME component. The aggregation of
MD and either of MFull

T or MEx
T can be used as the offloading fail-safe.

III. SYSTEM DESIGN

We first describe the processing pipeline classes for AS,
detail our proposed design approach supporting optimal of-
floading points, and discuss how to implement the various
processing components using modular design techniques.

A. End-to-end Processing Pipelines in Autonomous Systems
For AS, there are two primary approaches to implement

end-to-end control pipelines:
Imitation learning: The approach instigates a model learn-

ing how to imitate human experts’ behavior with regards
to a specific control task (e.g., self-driving) [17], where a
model can learn through supervised learning to minimize a
loss function between its predictions and ground-truth values.
Mainly, there are two primary components: (i) Perception;
to perceive events occurring in the environment, sensing
modalities are provided to the AS through sensory equipment
(e.g., vision through mounted cameras) to abstract higher state
representations from the collected data through a processing
model (e.g., DNN) [15], and (ii) Control; concatenated at
the end of the perception pipeline to receive its outputs – in
addition to any available control inputs (e.g., turn left signal)
– and translate them into the necessary control outputs.

Modular Pipelines: This is the standardized approach for
implementing industry-grade processing pipelines for AS [3],
[4], [11], [18], which relies on having independent modules
placed at different parts of the computing pipeline, each
receiving the partial outputs from the preceding module(s) for
processing to provide new partial outputs for the subsequent
module(s) until the final control unit outputs are generated,
where every module is responsible for a specific learnable
task – as how the outputs from perception and localization
modules in an ADS are provided to a planning module [19].
Since perception constitutes the bulk of the processing load
[3], directing offloading optimizations towards its modules can
maximize performance gains across the entire pipeline.

B. In-Model Compression for Split Computing
One prominent approach for achieving efficient split-

computation between the local platform and the edge server
is the application of in-model compression to obtain optimal
offloading points. Formally, a DNN model M can be split into
two parts: a head MH and tail MT to be deployed on the local
and edge server platforms, respectively. The direct approach
to select the splitting layer, `, has been to identify the layer at
which the output z` = MH(x) becomes smaller in size than
the input x to decrease transmission overhead. Oftentimes,
this criterion is only met at the latter layers for many DNN
architectures, which leads to increased local computation [5].
Instead, recent split computing works proposed the notion of
in-model compression through a bottleneck [10], in which

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

a modified model version M0 would comprise 3 sections:
ME , MD, and MT . Submodels ME and MD represent a
specialized form of an encoder-decoder architecture replacing
the original MH . From here, ME would serve as the new
head M0

H while the concatenation of MD and MT would be
deployed on the edge server. Conceptually, ME is introduced
to obtain the compressed form z0

`
= ME(x) prematurely in

the network to realize an early optimal offloading point –
bottleneck – within M0. MD on the other hand serves two
purposes: (i) ensuring that z0 = MD(ME(x)) maintains the
same spatial dimensions as the original input to MT , and
(ii) minimizing the loss incurred by M0 due to the proposed
structural modifications of ME and MD. In terms of the
latter, techniques inspired by knowledge distillation (KD) have
shown tremendous promise in maintaining the accuracy of M0

on par with that of the original M [9], [13].

C. Blockwise Neural Architecture Search
For energy efficiency, we propose to supplement the pro-

cessing pipeline with an early-exit model as an additional
execution path for both the main and fail-safe procedures.
Since numerous AS applications (e.g., control) belong to the
class of regression problems, typical approaches that rely on
classification confidence estimates to decide on early-exiting
may not be directly applicable [20]. Instead, we propose to
implement the early exit using a modular approach, namely
blockwise neural architecture search (NAS) whose advantages
are fourfold: (i) A modular approach aids in identifying which
blocks are the most sensitive to alterations with regards to the
task at hand, allowing optimizations to be targeted towards
the less-critical blocks, (ii) Customization of search blocks is
supported, enabling the inclusion of desired edge computing
features as incorporating a bottleneck in the first search block
(see Figure 3), (iii) The rendered simpler execution path can
be leveraged for energy efficiency along both the primary and
fail-safe execution paths with minimal impact on the model
utility, and (iv) A student model’s accuracy is not necessarily
bound by that of the teacher.

Blockwise NAS using Knowledge Distillation: Neural Ar-
chitecture Search (NAS) is an established method to automate
DNN model design through identifying architecture ↵⇤ that
achieves the best performance on a target task. Typically, a
NAS search space is defined as a large supernet A with shared
parameter weights W , and ↵⇤ 2 A is a subnet within. To
manage the colossal search overheads, the approach in [21]
proposed to divide the search space A into smaller successive
independent supernets Ai with each block i possessing its
shared weights Wi, leading to an exponential reduction in the
search space size and the overall design turnaround time. Thus,
given inputs X and ground truth values Y , ↵⇤ is formed by
aggregating N subnets from the search blocks which satisfy:

↵⇤ = argmin
↵2A

NX

i=1

Lval(W
⇤
i
(↵i),↵i; yi�1, y) (9)

s.t. W ⇤
i
= min

Wi

Ltrain(Wi,Ai; yi�1, yi) (10)

where yi�1 and yi represent the inputs and ground truth labels
for search block i, respectively. Practically, pre-trained DNN
models on the same task can be leveraged as teachers to
obtain yi and yi�1 from their intermediate data represen-
tations at different stages, which allows guiding the search

Teacher Block 1 Teacher Block 2 Teacher Block n

Search Block 2 Loss LossLoss

PM11
PM12
PM13
PM14

x

B
lo

ck
w

is
e

N
A

S

Search Block n

Bottleneck in the first
student block Input for search block 2 Knowledge Distillation

for loss estimation

y1 y2 yn

Tr
av

er
sa

l
Se

ar
ch

C18 3) Save model if it
attains minimal loss
and return to stage 2

C18

C18
C18
C19

C19

R
ou

nd
1

R
ou

nd
2 PM11

PM12
PM13
PM14

PM21
PM22
PM23
PM24

C28

C28

C29

C29

PM21
PM22
PM23
PM24

PMn1
PMn2
PMn3
PMn4

Cn8
Cn8
Cn9

PMn1
PMn2
PMn3
PMn4

Cn9 6) Save model if it
attains minimal loss
and return to stage 1

Fig. 3. Blockwise NAS for edge computing (top) and a walk-through example
for the traversal search (bottom). PM is for partial model and its indices are
for the stage and the PM’s ranking based on the loss defined in (12).

process for each search block i. In words, the main building
blocks constituting a DNN architecture, such as the 4 primary
blocks of stacked layers in a ResNet architecture [15], are
designated as separate teacher blocks, each with its input and
output representations utilized as guides for the corresponding
search block, as depicted in Figure 3 (top). Therefore using
knowledge distillation (KD), the training and validation loss
estimates, Ltrain and Lval, between block predictions ŷi(·)
and the teacher ground truth values can be given by:

Ltrain(Wi,Ai; yi�1, yi) =
1

K
||yi � ŷi(yi�1)||j (11)

Lval(Wi,Ai; yi�1, yi) =
1

K · �j(yi)
||yi � ŷi(yi�1)||j (12)

in which K is the number of output neurons, �(yi) is the
standard deviation of yi, and j is for the function degree.
The loss estimate in Lval is normalized relative to the cor-
responding �j(yi) to ensure fairness since feature map sizes
can differ from one candidate partial model to the other within
a search block. Without any loss in generality, we found for
experiments that setting j to 2 for Ltrain (Mean Squared
Error) and to 1 for Lval (Mean Absolute Error) worked well.

Model Aggregation under Constraint: After the initial
search process has concluded, partial model rankings are
rendered for each search block according to Lval. If there are
no target performance constraints, then the top-ranking partial
models from each block can be concatenated to construct
the complete DNN model However, as the goal here is to
obtain more efficient computational blocks for the early exit,
a target performance constraint (e.g., latency) denoted by
Ctarget needs to be satisfied. To avoid the prohibitive act
of evaluating each possible combination of partial models,
we construct a lookup table for the performance costs of
each candidate operation within a search block (which in the
case of latency are obtained through hardware measurements).
Then, we can estimate the maximum allowable cumulative
performance cost for each block Ci as:

Ci =
iX

n=1

costn = Ctarget �
NX

n=i+1

min costn (13)

where min costn is the minimum cost for a partial model
at block n estimated from the pre-calculated lookup table.
Once each block’s maximum cost Ci has been estimated using
(13), a traversal search can be performed starting from the first
search block, and recursively going through the partial models
of the subsequent blocks as long as the corresponding Ci con-
straints are satisfied. In other words, the testing of subsequent
blocks is skipped if the current partially constructed model at
block i has a cumulative performance cost that exceeds Ci.
Furthermore, once a model satisfying the constraint has been

Autonomy

Perception Reasoning Control

Object
Detection

Semantic
Segmentation

Image
Classification

Semantic
Extraction

Motion
Prediction

Path Planning

Vehicle Control

Mapping and
Localization

Autonomy Stack

Concatenation of complex Modules (often neural networks)

1

Autonomous cars and other large vehicles can support the stack,
at the price of an increased cost and power expense

2

Autonomous cars and other large vehicles can support the stack,
at the price of an increased cost and power expense

3

What if we want to empower small scale vehicles with
advanced autonomy functionalities?

Defense
Logistics

Delivery

4

Or even just advanced computer vision…

Low-orbit monitoring

Traffic/City Monitoring

5

Objectives and Approach
Dynamic-Distributed AI pipelines that adapt to

data and system context

Objectives and Approach
Dynamic-Distributed Composable AI pipelines

that adapt to data and system context

Function 1
Computing Hub

Wireless
Channel

Mobile Device

Reconfiguration Agent Reconfiguration Agent

Function 2

Function 1

Function 3

6

Objectives and Approach
Dynamic-Distributed Composable AI pipelines

that adapt to data and system context

7

Camera
Input G

at
e

Lightweight Adaptive
Compression and Fusion

AI-Agent

Camera
Input G

at
e

Lightweight Adaptive
Compression and Fusion

AI-Agent

Camera
Input

G
at

e

Lightweight Adaptive
Compression and Fusion

AI-Agent

LiDAR
Input

G
at

e

Adaptive Decoder and
Multi-Task Models

AI-Agent

3D Mapping and
Localization

Object Detection

Semantic Segmentation

Wireless
Links

Hydra - Testbed

8

•Middleware for AI-controlled dynamic edge computing
•Airborne and ground autonomous vehicles connected to multiple edge servers
•Real-time telemetry, network and application logging for decision making
•Control of how many and which edge servers

Hydra - Testbed Current development

9

adopted wireless technologies in the present world, it is also
a viable choice for reliable task offloading. Modern Wi-
Fi system relies on multi-user multiple-input multiple-output
(MU-MIMO) system to transmit data to multiple stations
(STAs) simultaneously. The Access Point (AP)–integrated with
mobile edge device (MED) communicate simultaneously with
multiple STAs reliably and efficiently leveraging beamform-
ing through steering multiple transmission streams[2]. Wi-Fi
adopts orthogonal frequency-division multiplexing (OFDM)
to allow transmission in K partially overlapping orthogonal
sub-channels. The input bits are organized into groups–termed
as OFDM samples, each group containing a certain number
of bits. K number of such OFDM samples ak are grouped
into OFDM symbols a = [a�k/2,, a(k/2)�1] [3], [4]. The
digitally modulated symbols are simultaneously transmitted
over K number of sub-channels.

stx(t) = e
j2⇡fct

(K/2)�1X

�K/2

ake
j2⇡kt/T (1)

Equation 1 represents the transmitted signal whereas, fc

is the carrier frequency and T = 1/(�f) is the symbol
time with �f being the sub-channel spacing. To improve
the signal quality, the transmitter performs beamforming to
steer the transmission streams toward the intended receiver.
To perform the beamforming, multiple signal streams are
combined at the transmitter through steering weights W. W
is derived from the channel frequency response (CFR) matrix
H which is estimated for every OFDM sub-channels. The
obtained H is of the dimension of K⇥M⇥N where M and
N are the number of transmit and receive antennas. At the
receiver (beamformee), the beamformed signals are retrieved
from the fact that [H]l,i ⇥ [W]l,i = 0 where l 6= l or
i 6= i. Fig. 2 presents a 4 ⇥ 3 MU-MIMO system where AP
(beamformer) with 4 antennas transmitting to two different
STAs: STA A and STA B, having two and one receive
antennas enabled respectively. The transmission signal stx(t)
from the beamformer bounces off different physical objects
of the environment and P different copies of the signal are
received by the beamformees (STA A and STA B). If the
signal is transmitted from m 2 {0, 1, ...M � 1} antennas and
received by n 2 {0, 1, ...N � 1} antennas the CFR matrix H

is represented equation 2 where Ap and ⌧p are the attenuation
and delay experienced by path P.

Hk(n) = Ak(n)e
j�k(n)

=
P�1X

P=0

Ap(n)e
�j2⇡(fc+k/T)⌧p(n)

(2)

The beamformer (AP) derives W from the H matrix to steer
the transmission streams to enhance the power towards single
or multiple beamformees (STA) simultaneously. This helps to
improve the signal strength, resulting in improving the data
rate and the transmission delay. Another benefit of MU-MIMO
offloading is that the limited capacity of any server (STA) does

TX of AP (MED)

RX of STA
A

RX of STA
B

W11

W12

W13W21

W22

W23W31

W32

W33W41

W42

W43S1 S2 S3

H11

H21H31

H12

H22

H32

H13

H14

H23

H33

H24

H34

Fig. 2: Example of a 4⇥3 MU-MIMO system.

not degrade the overall network performance significantly as
it can offload to multiple servers simultaneously.

The overall link quality including transmission data rate,
packet drop, and transmission latency depends on the number
of transmissions and reception streams, available bandwidth,
and the number of STAs [5]. We present the preliminary results
on Note that, a higher number of transmission streams and
higher bandwidth increases the power consumption signifi-
cantly which causes the system to drain out faster hampering
the energy efficiency of the whole system badly[6]. Thus
it is very important to configure the MU-MIMO system
semantically to maintain reliable communication links and
optimize energy consumption simultaneously. However, both
(i) the abrupt change of the wireless channel due to the

erratic movements of the MEDs and (ii) the variations in

the time-criticality and reliability of the applications make it

very challenging to configure MU-MIMO system semantically.

Further details on problem formulation are presented in section
III-A.

On the contrary, an unreliable, unoptimized wireless link
that is non-adaptable to the requirements of the age of in-
formation (AoI) of the metaverse tasks leads to packet loss
from the offloaded data. The lost information in the offloaded
data hampers the granularity of the information and sometimes
corrupts the data completely. Thus it is important to evaluate
how packet (data) loss might affect different metaverse tasks.

A. Metaverse tasks performance with packet loss

To demonstrate, how the packet loss might hamper the
metaverse tasks, we consider two popular computer vision
tasks– (i) object detection and (ii) instance segmentation.

1) Object detection with packet loss: In object detection, a
model identifies objects of interest within an image and draws
bounding boxes around them. The intersection over union
(IoU) measures the extent of overlap between the predicted
bounding boxes and the ground truth (actual) bounding boxes.

2

• MU-MIMO comms
• Semantic control of comms parameters

(bandwidth, number of antennas, connectivity)
and packetization (replication vs parallelization)

Advanced comms Indoor-Outdoor Navigation
• Dynamic reconfiguration of autonomy stack

across “layers”
• Dynamic neural sensor fusion

Preliminaries

Problem Illustration

Stream of data from multiple sensors to be analyzed to support
mission functions and autonomous navigation

10

Onboard Computing

11

“Compressed” models deployed on the vehicle/robot
Quantization, distillation, pruning

•Hardware cost

Onboard Computing

11

•Hardware cost
•Task performance

• Model compression
• Tradeoff between MAP/latency

Onboard Computing

11

•Hardware cost
•Task performance

• Model compression
• Tradeoff between MAP/latency

•Energy

Onboard Computing

11

•Hardware cost
•Task performance

• Model compression
• Tradeoff between MAP/latency

•Energy
•Hardware Degradation

Onboard Computing

11

•Hardware cost
•Task performance

• Model compression
• Tradeoff between MAP/latency

•Energy
•Hardware Degradation
•Limited functionalities

Onboard Computing

11

Edge Computing

12

Data sent to a compute-capable device taking over the tasks

Edge Computing

•Latency/Latency variance

12

Edge Computing

12

Edge Computing

•Latency/Latency variance
•Uncertainty

12

Edge Computing

•Latency/Latency variance
•Uncertainty
•Bandwidth usage

• Sharing with other users and services

12

Edge Computing

•Latency/Latency variance
•Uncertainty
•Bandwidth usage

• Sharing with other users and services
•Hardware degradation

• Servers are more resilient

12

Distributed AI

Compression

JPEG
• Low complexity
• Bad rate-distortion curve (high compression gain)
• Designed for human perception

13

Compression

14

Neural Encoders
• High complexity (mobile device and server)
• High performance
• Designed to reconstruct the input image

Split Deep Neural Networks

15

Trivial Split DNN
• Distribution of computing load
• Compression only if split point is toward the end of the model
• Optimal latency often at extreme point

16

“Artificial” Bottleneck
• Architecture altered to incorporate a bottleneck (in-model compression)
• Objective: minimal complexity - maximum compression - maximum task

performance
• Specialized training

Split Deep Neural Networks

• Encoder/decoder-like structure within the model
• Semantic in-model compression obtained at the splitting point

17

Supervised Compression

Fig. 2: (left) Split computing: the original model is redesigned
with a “bottleneck” and then split into head and tail sections.
(right) Example of split computing system. Note that the
training process is not split but done offline.

III. BOTTLEFIT : PROPOSED FRAMEWORK

We first introduce the system model in Section III-A,
describe the bottleneck design in Section III-B, then we
present our new training strategy in Section III-C, and finally
illustrate the performance tradeoff guiding our system design
in Section III-D.

A. System Model and Preliminaries

The core idea behind split computing is to divide a DNN
into head and tail models, which are executed on the mobile
device and the edge server at runtime, respectively. The left
side of Fig. 2 shows an example of split computing with
bottlenecks, while the right side shows a concrete example
of a split computing system. When split computing is used in
our setting, the mobile device captures high-resolution images
(step 1), which are then fed to the head model, ultimately
tasked to produce a compressed representation by its output
tensor (step 2). The result is transmitted over the wireless
channel (step 3) and received by the edge server (step 4).
The compressed representation, then, is fed to the tail model
to produce the inference output such as predicted class label
(step 5), which is sent over the wireless channel (step 6) and
received by the mobile device (step 7).

In the following, the notation R indicates the set of real
numbers. Without loss of generality, we consider a deep
neural network (DNN) model defined as a mapping f(xi; ✓) :
R

i
! R

o of an input representation xi 2 R
i to an output

representation xo 2 R
o. By defining as L the number of

layers, the DNN mapping is computed through L subsequent
transformations given a model input x:

oj =

⇢
x j = 0
fj(oj�1, ✓j) 1  j  L

(1)

where oj and ✓ = {✓1, . . . , ✓L} are the output of the j-th layer
and the set of parameters of the DNN. Note that fj can be a
low-level layer (e.g., convolution, pooling and fully-connected
layers), but also a high-level layer consisting of multiple low-
level layers such as residual block or “shortcut” in ResNet
models [8], and dense block in DenseNet models [33].

B. Bottleneck Design
To build and define the bottlenecks, we introduce encoder

and decoder structures within an original pretrained model.
Specifically, we replace the first led layers in the original
model with an encoder and decoder. The former structure is
positioned from the first layer to the bottleneck, and plays a
role of “compressor”, generating a compact tensor from the
input sample. The latter is composed of the layers as part of
the tail model that decompress the encoded object, i.e., the
bottleneck’s output to recreate the output of an intermediate
layer. We point out that while traditional autoencoders com-
press and reconstruct an input, we modify the layers to operate
in an encoder-decoder fashion, which (i) maps the model input
to an intermediate output and (ii) is trained to execute a given
downstream task without excessive loss in accuracy. We show
in Section IV-C that autoencoders lose about 16% in accuracy
with respect to our approach.

Clearly, the design of the encoder/decoder (e.g., position in
the model, dimension of the bottleneck) influences the tradeoff
between computing load at the mobile device, overall com-
plexity and compression gain, which ultimately determines
key performance metrics such as energy consumption, delay
and accuracy. Thus, when introducing bottlenecks, we need
to carefully (i) design the encoder and decoder; (ii) choose
the bottleneck placement in the head model; (iii) preserve the
accuracy of the unaltered original model as much as possible.
The following sections address all these aspects to build the
BottleFit framework.

Bottleneck modeling: Given an original pretrained model
consisting of N layers, we design and introduce bottlenecks
to the model, and retrain the bottleneck-injected model to
preserve accuracy as much as possible. A bottleneck-injected
model is composed of n < N layers and takes as input a
tensor whose shape is identical to that for the original model.
As illustrated in Fig. 3, the head model H and tail model T are
built by splitting the model at the bottleneck layer B (=fk⇤).
The head model H overlaps with the encoder fenc, composed
of k⇤ layers i.e.,

H = fenc =

8
<

:

h0 = o0 = x
hj = fj(oj�1, ✓j) 1  j  k⇤ � 1,
hk⇤ = B(ok⇤�1, ✓B)

(2)

where ✓B is the set of parameters of the bottleneck layer B, and
hk⇤ indicates the bottleneck representation to be transferred
from the mobile device to the edge server in inference session.

�[E]GIg �IE]GIg

�[dkj��Z<OI

Y<hhQNQIg
¥X«�Û�G¦jP���[jP�Y<sIgh

+gIGQEjQ][

�DQgG�

�]jjYI[IEX

�I<G�!]GIY 0<QY�!]GIY

Fig. 3: Model components: encoder, decoder and classifier.
Note that the last component, classifier, consists of the last
(n� (k⇤ + d)) layers in the original pretrained model.

Training

17

The bottleneck representation hk⇤ is then fed to the tail
model T , which consists of the decoder fdec (d layers where
led = k⇤+d) and the remaining (n� led) layers in the original
model.

T =

8
<

:
fdec =

⇢
t0 = hk⇤

tj�k⇤+1 = fj(oj�1, ✓j) k⇤ < j  led
tj�k⇤+1 = fj(oj�1, ✓j) led < j  n

(3)
We remark that different from traditional autoencoders, we

do not create additional layers for the bottleneck, thus the
overall complexity of a bottleneck-injected model will not
increase from that of the original pretrained model. Instead,
to introduce bottlenecks we modify the head portion of the
original pretrained models that are often overparameterized.

Encoder-Decoder Implementation: To obtain the bottle-
neck, we then define a new sequence of encoder and decoder
layers. Specifically, given a sequence of the first layers in
the original pretrained model, we design encoder-decoder
architectures using the following steps:
1) Decompose high-level layers (e.g., dense blocks in
DenseNet [33] and residual blocks in ResNet [8]) in the
sequence into low-level layers such as convolution, batch
normalization and ReLU layers;
2) Prune a subset of the layers and define a new sequence
by the led remaining layers. If necessary, a set of new layers
can be added: deconvolution layers for upsampling after the
bottleneck point and/or pooling layers for better convergence;
3) Determine the location of the bottleneck in the new se-
quence (k⇤-th layer in the led layers);
4) Adjust layer-specific hyperparameters of layers such as
number of output channels, kernel size and kernel-stride to
have the sequence’s output shape match that expected by the
remaining layers in the original pretrained model.

We use convolution layers to create the bottleneck at the
k⇤-th layer (1  k⇤  led) since convolution layers allow us
to control their output tensor shape with respect to channel,
height and width. Then, we choose 2 consecutive convolution
layers in the new sequence to build bottlenecks oB = ok⇤ at
the k⇤-th layer defined in the previous section, and the follow-
ing layers gradually decode the compressed representation. To
achieve further compression, we also reduce patch size (height
and width) of the bottleneck representation. We use a slightly
larger kernel-stride size in the early convolution layer(s) to
reduce all the output channels, width and height of the output
tensor, and introduce a deconvolution layer after the bottleneck
layer so that the decoded representation can match the tensor
shape expected by the following layers.

C. Multi-Stage Training Strategy

Our core intuition to preserve accuracy is to maximize
the performance of the encoding and decoding capabilities
of the layers neighboring the splitting point to produce an
output preserving the overall task performance. Specifically:
(i) the training strategy should be sophisticated enough to
train low-complexity encoders fenc and (ii) the following

Fig. 4: Proposed multi-stage training method. It is optional to
freeze the encoder’s parameters in the stage 2.

modules including the decoder should adapt the compressed
representations to the downstream tasks.

Figure 4 illustrates our proposed multi-stage training
method for bottleneck-injected models. We focus on the train-
ing of the compressed bottleneck representations, and adapt the
learnt representations to the target task, which in this study is
image classification on the ImageNet dataset. In the following,
we will refer to the original and modified models as teacher
and student models, respectively.

Stage 1 – Pretraining Encoder-Decoder: This stage fo-
cuses on training both the encoder fenc and decoder fdec in
the modified model to reconstruct the representations of the
corresponding layer in the original model. At this stage, we
use a loss function – Generalized Head Network Distillation
(GHND) – which considers the output of multiple layers in
the model:

LPre(x) = �ed||ted(x)�fdec(fenc(x))||
2
2+

X

j2J

�j ||tj(x)�sj(x)||
2
2,

(4)
where ted denotes a function consisting of teacher’s layers to
be replaced with the encoder fenc and decoder fdec in the
student model. For example, the function ted for DenseNet-
169, DenseNet-201 and ResNet-152 consist of layers until
(including) the 2nd transition layer in DenseNet-169 and -
201 [33], and the 2nd block in ResNet-152 [8], respectively.
j is a loss index for a pair of layers that are components
of classifier in teacher and student models (i.e., these layers
are frozen and in neither encoder nor decoder), and tj and
sj denote teacher and student model functions of input data
x for the loss index j (i.e, intermediate outputs of layers in
teacher and student models), respectively.3 �⇤ is a balancing
factor and set to 1 in this study. Importantly, we consider the
outputs of frozen layers, in addition to those from the trainable
layers during the head network distillation process.

3For simplicity, we define sj as a nested function using the first Kj layers in
student model i.e., sj(x) = fKj (fKj�1(...(f1(x)))), and the same applies
to teacher model.

Multistage Training
• Encoder-decoder trained to reproduce an intermediate layer of the original model
• Supervised task-oriented compression: representation if trained to shed irrelevant bits

Performance

18

8

Fig. 5: SC2 for image classification on ImageNet (ILSVRC 2012). We show the supervised R-D tradeoff (left), the ExR-D tradeoff
(middle), and the full three-way tradeoff (right). In all cases, we used ResNet-50 as our reference model. Grey lines denote projections.
Our Entropic Student model performs best in R-D and ExR-D performance.

Fig. 6: SC2 for object detection on COCO 2017. We show the supervised R-D tradeoff (left), the ExR-D tradeoff (middle), and the
full three-way tradeoff (right). In all cases, we used Faster R-CNN with ResNet-50 and FPN as our reference model. Grey lines denote
projections. Our Entropic Student model performs best in R-D and ExR-D performance.

encoder is approximately 40 times smaller than the encoder of
the mean-scale hyperprior and can therefore be deployed effi-
ciently on mobile devices. As shown in [30], our model also can
achieve a much shorter latency to complete the input-to-prediction
pipeline (see Fig. 1) than the baselines we considered for resource-
constrained edge computing systems.

5.2 Object Detection and Semantic Segmentation
We further study the rate-distortion performance on two down-
stream tasks: object detection and semantic segmentation, reusing
the proposed model pretrained on the ImageNet dataset. As
suggested by He et al. [63], such pre-training speeds up the
convergence for other tasks [52]. Specifically, we train Faster R-
CNN [41] and DeepLabv3 [42] for object detection and semantic
segmentation, respectively, using our models pre-trained on Im-
ageNet. Faster R-CNN is a two-stage object detection model; it
generates region proposals and classifies objects in the proposed
regions. DeepLabv3 is a semantic segmentation model [64].

For object detection, we use the COCO 2017 dataset [53] to
fine-tune the models. The training and validation splits in the
COCO 2017 dataset have 118,287 and 5,000 annotated images,
respectively. For detection performance, we refer to mean average
precision (mAP) for bounding box (BBox) outputs with different
Intersection-over-Unions (IoU) thresholds from 0.5 and 0.95
on the validation split. For semantic segmentation, we use the
PASCAL VOC 2012 dataset [54] with 1,464 and 1,449 samples

for training and validation splits, respectively. We measure the
performance by pixel IoU averaged over its 21 classes. It is worth
noting that following the PyTorch [58] implementations, the input
image scales for Faster R-CNN [41] are defined by the shorter
image side and set to 800 in this study which is much larger than
the input image in the previous image classification task. As for
DeepLabv3 [42], we use the resized input images such that their
shorter size is 513. The training setup and hyperparameters used to
fine-tune the models are described in the supplementary material.

Figures 6 and 7 show the results for object detection and
semantic segmentation, where the left figure shows the super-
vised R-D tradeoff. Compared to various split computing and
input compression approaches, our approach demonstrates better
supervised R-D curves in both the tasks. In object detection,
our model’s improvements over BPG and the joint autoregressive
hierarchical prior are smaller than those in the image classification
and semantic segmentation tasks. However, as shown in Figs. 6
and 7 (middle and right), the proposed ExR-D and three-way
tradeoffs show that the combined improvements in encoder size
and data size reductions are even more significant.

5.3 Bottleneck Placement
An important design decision in split computing is to choose
the layer for splitting the DNN. If the network is split at an
early layer, the computation on the edge server is lightweight,
but the learned representation at the splitting point is not easily

8

Fig. 5: SC2 for image classification on ImageNet (ILSVRC 2012). We show the supervised R-D tradeoff (left), the ExR-D tradeoff
(middle), and the full three-way tradeoff (right). In all cases, we used ResNet-50 as our reference model. Grey lines denote projections.
Our Entropic Student model performs best in R-D and ExR-D performance.

Fig. 6: SC2 for object detection on COCO 2017. We show the supervised R-D tradeoff (left), the ExR-D tradeoff (middle), and the
full three-way tradeoff (right). In all cases, we used Faster R-CNN with ResNet-50 and FPN as our reference model. Grey lines denote
projections. Our Entropic Student model performs best in R-D and ExR-D performance.

encoder is approximately 40 times smaller than the encoder of
the mean-scale hyperprior and can therefore be deployed effi-
ciently on mobile devices. As shown in [30], our model also can
achieve a much shorter latency to complete the input-to-prediction
pipeline (see Fig. 1) than the baselines we considered for resource-
constrained edge computing systems.

5.2 Object Detection and Semantic Segmentation
We further study the rate-distortion performance on two down-
stream tasks: object detection and semantic segmentation, reusing
the proposed model pretrained on the ImageNet dataset. As
suggested by He et al. [63], such pre-training speeds up the
convergence for other tasks [52]. Specifically, we train Faster R-
CNN [41] and DeepLabv3 [42] for object detection and semantic
segmentation, respectively, using our models pre-trained on Im-
ageNet. Faster R-CNN is a two-stage object detection model; it
generates region proposals and classifies objects in the proposed
regions. DeepLabv3 is a semantic segmentation model [64].

For object detection, we use the COCO 2017 dataset [53] to
fine-tune the models. The training and validation splits in the
COCO 2017 dataset have 118,287 and 5,000 annotated images,
respectively. For detection performance, we refer to mean average
precision (mAP) for bounding box (BBox) outputs with different
Intersection-over-Unions (IoU) thresholds from 0.5 and 0.95
on the validation split. For semantic segmentation, we use the
PASCAL VOC 2012 dataset [54] with 1,464 and 1,449 samples

for training and validation splits, respectively. We measure the
performance by pixel IoU averaged over its 21 classes. It is worth
noting that following the PyTorch [58] implementations, the input
image scales for Faster R-CNN [41] are defined by the shorter
image side and set to 800 in this study which is much larger than
the input image in the previous image classification task. As for
DeepLabv3 [42], we use the resized input images such that their
shorter size is 513. The training setup and hyperparameters used to
fine-tune the models are described in the supplementary material.

Figures 6 and 7 show the results for object detection and
semantic segmentation, where the left figure shows the super-
vised R-D tradeoff. Compared to various split computing and
input compression approaches, our approach demonstrates better
supervised R-D curves in both the tasks. In object detection,
our model’s improvements over BPG and the joint autoregressive
hierarchical prior are smaller than those in the image classification
and semantic segmentation tasks. However, as shown in Figs. 6
and 7 (middle and right), the proposed ExR-D and three-way
tradeoffs show that the combined improvements in encoder size
and data size reductions are even more significant.

5.3 Bottleneck Placement
An important design decision in split computing is to choose
the layer for splitting the DNN. If the network is split at an
early layer, the computation on the edge server is lightweight,
but the learned representation at the splitting point is not easily

Rate-Distortion-Complexity Curve

Bit Allocation

19

Visualization: bit allocation with respect to a variational autoencoder

In
pu

ti
m

ag
es

SC
vs

.I
C

Figure 2: Bitrate comparison between a supervised compression (SC) model (Matsubara et al., 2022c) and an input
compression (IC) model (Ballé et al., 2018). We plot the difference of the bits allocated for each pixel, exemplified on
three images. Areas where the SC model allocates fewer and more bits for the given image are indicated in blue and
red, respectively (best viewed in PDF). It is apparent how supervised compression allocates more bits to information
relevant to the supervised object recognition goal.

show for image classification and object detection tasks that a combination of 1) channel reduction (dimensionality
reduction) in convolution layers and 2) quantization at bottleneck layer is key to designing such bottlenecks.

2.2 Supervised Compression

Supervised compression refers to the process of learning compressed representations specifically tailored for super-
vised downstream tasks, including classification, detection, or segmentation. In this context, a supervised compression
model is defined as a deterministic mapping x ‘æ zs ‘æ y, where x, y, and zs represent the input data, targets, and
compressed representations, respectively, for the given supervised downstream task(s).

This formulation bears resemblance to the concept of the deep variational information bottleneck (Alemi et al., 2017),
although it should be noted that the latter was originally devised for enhancing adversarial robustness rather than com-
pression. For comparison, we also consider a deterministic mapping x ‘æ zu ‘æ x̂ ‘æ y to denote the inference process
of an input compression model followed by a supervised model. Here, zu represents the compressed representations
of the input data x, while x̂ indicates the reconstructed input data.

It is important to highlight that in unsupervised input compression, the input data x can be accurately reconstructed
from zu (x ƒ x̂). However, in the case of supervised compression, the compressed representations zs lack the neces-
sary information for a precise reconstruction of the original input data. This is because supervised compression aims
to learn zs in a way that retains relevant information for the specific downstream task(s), allowing for the compression
of irrelevant information. For instance, in image classification tasks, not all pixels in input images are crucial, and
supervised compression can effectively discard such irrelevant information in zs, while zu requires all information to
faithfully reconstruct the original input data x.

Since input compression models are trained to reconstruct images, they tend to allocate bits more or less uniformly
across the image. In contrast, supervised compression methods use the compressed features for prediction tasks; they
should therefore be expected to allocate most of their bits to only relevant regions of the image, i.e., regions that
correlate with the prediction task. Figure 2 confirms this intuition, showing the difference in the bitrates between
supervised compression and input (image) compression approaches. In more detail, we create spatial maps of the
bits consumed for each pixel for an image compression model (Ballé et al., 2017) and a supervised compression
model, Entropic Student (Matsubara et al., 2022c) and plot the differences (bottom row). Blue and red areas indicate

4

Multi-Branched Split Architecture

20

Dynamic Neural Network for Autonomous Vehicles

Local and Edge pipelines dynamically selected based on sample
and system parameters
• Computing path dynamically controlled by a lightweight AI agent
• Predictive logics based on DRL

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

where LTx, LRx, ETx, and ERx are the transmission laten-
cies and energy consumption in the uplink and downlink. �
represents a random function for the additional abrupt delays
that can be experienced due to a variety of factors including
a packet’s round-trip propagation delay, LRT (influenced by
delicate factors like motion characteristics or the line of sight
between an AS and the server), and the queuing delays at the
server, Lqueue. If the sizes of the respective transmitted and
received data are given by a and b, we obtain:

LTx =
a

�u

, ETx = PTx · LTx (5)

LRx =
b

�d

, ERx = PRx · LRx (6)

in which �u, �d, PTx, and PRx are the data rates and
transmission power estimates at the local platform during
upload and download, respectively. With these performance
estimates defined, multiple execution strategies, M , can be
supported for edge computing – comprising at least the basic
local and remote execution modes [4]. Depending on the ter-
mination point (e.g., early or full exit) and whether execution
is performed locally or remotely, each m 2 M can possess
its own unique execution path and performance overhead, and
thus the energy optimization objective for every time window
of duration T can be given by:

min
m2M

Em

total
, s.t. Lm

total
<= T, �precm < precth (7)

where the goal is to identify an optimal edge computing
operational mode that provides the lowest energy footprint
as defined in (2), subject to a reliability constraint governed
by the total execution latency condition, and a robustness
constraint ensuring that any selected mode should not degrade
the task’s precision score metric (e.g., accuracy) by more than
a predetermined threshold, precth (from a reference baseline).

Modeling fail-safe offloading: As mentioned, offloading
strategies for the latency-critical AS applications employ a
fail-safe routine, mostly triggering local execution if server
responses in the corresponding time window are perceived to
peak beyond a critical threshold, defining Lexec from (1) as:

Lexec =

(
LH , if LH + Lcomm + Lser < T � LFS

LH + LFS , otherwise
(8)

where LH is the execution latency for the head portion of a
model on the local platform prior to offloading whereas LFS

is the execution latency component for the fail-safe. Currently,
fail-safe invocations are perceived as sporadic occurrences.
However, we contend that the randomness induced by � in
(3) introduces an uncertainty dimension to the estimation of
Lcomm, possibly leading to a persistent evaluation of Lexec

in (8) to the second case, causing unintended performance
overheads if not properly considered.

TESTUDO aims to remedy this deficiency by actively con-
sidering the impact of the offloading fail-safe invocation fre-
quencies on the overall performance to guide both the design
and deployment stages of the edge computing solution. In
Figure 2, we depict an instance of the final system model
rendered with execution blocks distributed between the local
platform and the edge server, supporting multiple potential
operational modes that instigate the need for a learning-based
approach for solving (7). More details are provided on the
design and functionality of each component in the next section.

Local Platform

Tx

Edge Server

்ܯ
ி௨௟௟ Full Tail

்ܯ
ி௨௟௟ Full Tailܯ஽

ாܯ஽ܯ

Control Unit
Rx

Input

receive control values

Transmit compressed data

்ܯ
ா௫ Exit Tail

Fig. 2. An example end-to-end control system architecture rendered through
TESTUDO supporting reliable edge computing for autonomous systems.
Offloading point is placed following the ME component. The aggregation of
MD and either of MFull

T or MEx
T can be used as the offloading fail-safe.

III. SYSTEM DESIGN

We first describe the processing pipeline classes for AS,
detail our proposed design approach supporting optimal of-
floading points, and discuss how to implement the various
processing components using modular design techniques.

A. End-to-end Processing Pipelines in Autonomous Systems
For AS, there are two primary approaches to implement

end-to-end control pipelines:
Imitation learning: The approach instigates a model learn-

ing how to imitate human experts’ behavior with regards
to a specific control task (e.g., self-driving) [17], where a
model can learn through supervised learning to minimize a
loss function between its predictions and ground-truth values.
Mainly, there are two primary components: (i) Perception;
to perceive events occurring in the environment, sensing
modalities are provided to the AS through sensory equipment
(e.g., vision through mounted cameras) to abstract higher state
representations from the collected data through a processing
model (e.g., DNN) [15], and (ii) Control; concatenated at
the end of the perception pipeline to receive its outputs – in
addition to any available control inputs (e.g., turn left signal)
– and translate them into the necessary control outputs.

Modular Pipelines: This is the standardized approach for
implementing industry-grade processing pipelines for AS [3],
[4], [11], [18], which relies on having independent modules
placed at different parts of the computing pipeline, each
receiving the partial outputs from the preceding module(s) for
processing to provide new partial outputs for the subsequent
module(s) until the final control unit outputs are generated,
where every module is responsible for a specific learnable
task – as how the outputs from perception and localization
modules in an ADS are provided to a planning module [19].
Since perception constitutes the bulk of the processing load
[3], directing offloading optimizations towards its modules can
maximize performance gains across the entire pipeline.

B. In-Model Compression for Split Computing
One prominent approach for achieving efficient split-

computation between the local platform and the edge server
is the application of in-model compression to obtain optimal
offloading points. Formally, a DNN model M can be split into
two parts: a head MH and tail MT to be deployed on the local
and edge server platforms, respectively. The direct approach
to select the splitting layer, `, has been to identify the layer at
which the output z` = MH(x) becomes smaller in size than
the input x to decrease transmission overhead. Oftentimes,
this criterion is only met at the latter layers for many DNN
architectures, which leads to increased local computation [5].
Instead, recent split computing works proposed the notion of
in-model compression through a bottleneck [10], in which

21

• Architecture automatically generated using Neural Architecture Search based
on system parameters

• Optimized position and shape of the bottleneck

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

a modified model version M0 would comprise 3 sections:
ME , MD, and MT . Submodels ME and MD represent a
specialized form of an encoder-decoder architecture replacing
the original MH . From here, ME would serve as the new
head M0

H while the concatenation of MD and MT would be
deployed on the edge server. Conceptually, ME is introduced
to obtain the compressed form z0

`
= ME(x) prematurely in

the network to realize an early optimal offloading point –
bottleneck – within M0. MD on the other hand serves two
purposes: (i) ensuring that z0 = MD(ME(x)) maintains the
same spatial dimensions as the original input to MT , and
(ii) minimizing the loss incurred by M0 due to the proposed
structural modifications of ME and MD. In terms of the
latter, techniques inspired by knowledge distillation (KD) have
shown tremendous promise in maintaining the accuracy of M0

on par with that of the original M [9], [13].

C. Blockwise Neural Architecture Search
For energy efficiency, we propose to supplement the pro-

cessing pipeline with an early-exit model as an additional
execution path for both the main and fail-safe procedures.
Since numerous AS applications (e.g., control) belong to the
class of regression problems, typical approaches that rely on
classification confidence estimates to decide on early-exiting
may not be directly applicable [20]. Instead, we propose to
implement the early exit using a modular approach, namely
blockwise neural architecture search (NAS) whose advantages
are fourfold: (i) A modular approach aids in identifying which
blocks are the most sensitive to alterations with regards to the
task at hand, allowing optimizations to be targeted towards
the less-critical blocks, (ii) Customization of search blocks is
supported, enabling the inclusion of desired edge computing
features as incorporating a bottleneck in the first search block
(see Figure 3), (iii) The rendered simpler execution path can
be leveraged for energy efficiency along both the primary and
fail-safe execution paths with minimal impact on the model
utility, and (iv) A student model’s accuracy is not necessarily
bound by that of the teacher.

Blockwise NAS using Knowledge Distillation: Neural Ar-
chitecture Search (NAS) is an established method to automate
DNN model design through identifying architecture ↵⇤ that
achieves the best performance on a target task. Typically, a
NAS search space is defined as a large supernet A with shared
parameter weights W , and ↵⇤ 2 A is a subnet within. To
manage the colossal search overheads, the approach in [21]
proposed to divide the search space A into smaller successive
independent supernets Ai with each block i possessing its
shared weights Wi, leading to an exponential reduction in the
search space size and the overall design turnaround time. Thus,
given inputs X and ground truth values Y , ↵⇤ is formed by
aggregating N subnets from the search blocks which satisfy:

↵⇤ = argmin
↵2A

NX

i=1

Lval(W
⇤
i
(↵i),↵i; yi�1, y) (9)

s.t. W ⇤
i
= min

Wi

Ltrain(Wi,Ai; yi�1, yi) (10)

where yi�1 and yi represent the inputs and ground truth labels
for search block i, respectively. Practically, pre-trained DNN
models on the same task can be leveraged as teachers to
obtain yi and yi�1 from their intermediate data represen-
tations at different stages, which allows guiding the search

Teacher Block 1 Teacher Block 2 Teacher Block n

Search Block 2 Loss LossLoss

PM11
PM12
PM13
PM14

x

B
lo

ck
w

is
e

N
A

S

Search Block n

Bottleneck in the first
student block Input for search block 2 Knowledge Distillation

for loss estimation

y1 y2 yn

Tr
av

er
sa

l
Se

ar
ch

C18 3) Save model if it
attains minimal loss
and return to stage 2

C18

C18
C18
C19

C19

R
ou

nd
1

R
ou

nd
2 PM11

PM12
PM13
PM14

PM21
PM22
PM23
PM24

C28

C28

C29

C29

PM21
PM22
PM23
PM24

PMn1
PMn2
PMn3
PMn4

Cn8
Cn8
Cn9

PMn1
PMn2
PMn3
PMn4

Cn9 6) Save model if it
attains minimal loss
and return to stage 1

Fig. 3. Blockwise NAS for edge computing (top) and a walk-through example
for the traversal search (bottom). PM is for partial model and its indices are
for the stage and the PM’s ranking based on the loss defined in (12).

process for each search block i. In words, the main building
blocks constituting a DNN architecture, such as the 4 primary
blocks of stacked layers in a ResNet architecture [15], are
designated as separate teacher blocks, each with its input and
output representations utilized as guides for the corresponding
search block, as depicted in Figure 3 (top). Therefore using
knowledge distillation (KD), the training and validation loss
estimates, Ltrain and Lval, between block predictions ŷi(·)
and the teacher ground truth values can be given by:

Ltrain(Wi,Ai; yi�1, yi) =
1

K
||yi � ŷi(yi�1)||j (11)

Lval(Wi,Ai; yi�1, yi) =
1

K · �j(yi)
||yi � ŷi(yi�1)||j (12)

in which K is the number of output neurons, �(yi) is the
standard deviation of yi, and j is for the function degree.
The loss estimate in Lval is normalized relative to the cor-
responding �j(yi) to ensure fairness since feature map sizes
can differ from one candidate partial model to the other within
a search block. Without any loss in generality, we found for
experiments that setting j to 2 for Ltrain (Mean Squared
Error) and to 1 for Lval (Mean Absolute Error) worked well.

Model Aggregation under Constraint: After the initial
search process has concluded, partial model rankings are
rendered for each search block according to Lval. If there are
no target performance constraints, then the top-ranking partial
models from each block can be concatenated to construct
the complete DNN model However, as the goal here is to
obtain more efficient computational blocks for the early exit,
a target performance constraint (e.g., latency) denoted by
Ctarget needs to be satisfied. To avoid the prohibitive act
of evaluating each possible combination of partial models,
we construct a lookup table for the performance costs of
each candidate operation within a search block (which in the
case of latency are obtained through hardware measurements).
Then, we can estimate the maximum allowable cumulative
performance cost for each block Ci as:

Ci =
iX

n=1

costn = Ctarget �
NX

n=i+1

min costn (13)

where min costn is the minimum cost for a partial model
at block n estimated from the pre-calculated lookup table.
Once each block’s maximum cost Ci has been estimated using
(13), a traversal search can be performed starting from the first
search block, and recursively going through the partial models
of the subsequent blocks as long as the corresponding Ci con-
straints are satisfied. In other words, the testing of subsequent
blocks is skipped if the current partially constructed model at
block i has a cumulative performance cost that exceeds Ci.
Furthermore, once a model satisfying the constraint has been

Dynamic Neural Network for Autonomous Vehicles

Split Self-Adaptive AI for Navigation

NaviSplit

22

A

B

Navigation problem: nano/microdrone autonomously
determines path to reach point B from point A in an

unknown environment

NaviSplit

22

A

B

Input: (a) GPS, (b) RGB image (no depth)

NaviSplit

23

Two neural models:
• Depth estimation: neural model transforms the RGB image into a

depth map
• Navigation: neural model transforms the depth map into motion

commands

Depth Estimation Model Navigation Model

R
G

B
Im

ag
e

D
ep

th
 m

ap

C
on

tr
ol

NaviSplit

24

Supervised training based on knowledge distillation to split
the depth estimation model

NaviSplit

25

Fig. 1. Overview of the SC model embedded in the NaviSplit framework:
a teacher task model is split into head a tail portions, where the split point
with a unique dynamic encoding size which can scale to context, as opposed
to literature which keeps the encoding size static.

then used by the edge server to execute the pipeline trans-
forming images to motion commands. However, especially
in systems with extreme resource constraints – e.g., a nano
drone connected to a mobile base station, the wireless link
connecting the drone to the edge server may have a severely
constrained capacity, where the achievable data rate has an
erratic pattern due to the motion characteristics of the drone.

A. NaviSplit Approach

Figure 1 illustrates the typical structure of a task model in-
jected with a compressed split point for SC, where knowledge
distillation is used to to downsize a larger teacher model into a
smaller student neural network that compresses an intermedi-
ate representation to be communicated downstream to an edge
server. We seek a methodology to reduce the amount of data
transferred over the channel while preserving the navigation
performance of the overall pipeline. To this aim, NaviSplit
develops a new generation of neural models combining split
computing and supervised compression with a gated multi-
branched model. In the SC method we use in this paper,
the original neural network performing the task (depth map
estimation in this paper) is used as a teacher model to train a
student model whose architecture contains an encoder/decoder
structure transforming the input into the tensor produced by
an intermediate layer of the teacher model. Figure 2 depicts
the general schematics of NaviSplit. The gate is driven by a
specialized auxiliary module to select encoder/decoder pairs
built using a supervised compression approach. The rationale
is to select a compression strategy matching the needs of
the controller, that is, capable of producing representations
suitable to determine control given the operating context. We
briefly summarize the modules composing NaviSplit.
• Sensing: we collect sensor data in the form of RGB images,
that is sufficient to fulfil mission objectives as accomplished
with the downstream task model. We use the notation X to

Fig. 2. The framework we propose uses a teacher model that maps a
monocular RGB image to a depth map. Several different split points with
encoder/decoder are injected into the teacher model to make multiple student
model branches capable of split computing – of which an auxiliary model
selects from given perceived context. Inferred depth maps are input to the
navigation model that outputs motion actions used during drone navigation.

refer to a collected observation acquired from the onboard
camera.

• Depth Maps: the acquired sensor data is transformed into
a 2D depth map, which is a representation of the relative
distances between the drone and nearby objects within the
field of view of onboard sensors. We use the notation Ẑ to
refer to the inferred depth map where Z is the ground truth.

• Navigation: the depth maps are then used as input into a
model that transforms Ẑ into Y, which contains motion actions
for the drone to navigate safely on the shortest path between
its current and target location.

• Split Computing: several sensing-depth-navigation student
models are created which each use a different split computing
design. This results in a spectrum of models to select from
with various encoded data sizes which are indexed by a gate
control factor, c. We remark how the drone only needs to store
and execute (one per image) the head portion of the model (the
encoder), which is built to be of minimal complexity.

Our solution:
• Split depth estimation: depth model is

split to minimize data transmission and
computing effort at the drone

• Navigation: neural model transforms the
depth map into motion commands

• Adaptation: auxiliary neural model takes
mission parameters and depth map as input
to determine the optimal representation

Performance

26

point. Figure 4 illustrates these results as a function of
compacted data size. Using quantization actually improves the
Mean Absolute Percent Error (MAPE) of depth inference. We
assume this is due to some level of regularization due to the
mapping of a 32-bit floating point number to an 8-bit unsigned
integer along with inherent clipping done to a maximum value
of 22 (eliminating possible outliers that may otherwise blow
up towards infinity).

Fig. 4. Comparing the compressed size of the data at the split point against
depth mean absolute percent error (MAPE). Each marker (from left to right)
corresponds to a number of channels at the split point equal to: 2, 4, 8, 16,
and 32, respectively.

We then compare: the baseline student models, the bot-
tleneck student models, and edge computing that completely
offloads the RGB image by first running a JPEG compression
– where we experiment with various qualities of compression
between 5 and 95. See Figure 5. We see that the baseline
models perform with equal memory consumption as both the
bottleneck and JPEG models, however does not result in a
lower error than JPEG. Alternatively, the bottleneck models
perform with better error than that of the JPEG models -
showing that the bottleneck methodology is more robust.

We then select the model with lowest testing error for each
student model configuration. Figure 3 illustrates how each of
the baseline student models compare in depth error to each
other and to the teacher model. It is clear that the largest
student model, with 32 channels, either has lower or equal
error to the teacher at every distance. This illustrates the
robustness of the split computing training methods. The 8-
channel student model at some point switches between higher
and lower error than the teacher model, and always receives
higher error than the 32-channel student model. The 2-channel
student model receives lower error than all other models when
inferring depths below 10 meters, but otherwise receives the
highest error for all other depths. Thus there is a subtle
gradient in error between the models, for which we aim for
the auxiliary model to select from given the context.

C. Navigation Model

The three baseline student models illustrated in Figure 3
are each used to infer depth maps to be sent downstream
to a navigation model. The navigation model is trained and
initially evaluated in the Blocks map. Each branch is trained

Fig. 5. Comparing various compressed data sizes, corresponding to different
models, versus resulting depth MAPE. The markers from left to right: for the
bottleneck models, range between a reduction in channels of [12, 24, 64]; for
the baseline models, range between a reduction in channels of [2, 4, 8, 16,
32]; and for the JPEG models, range in quality of compression from 5 to 95
with increments of 10.

independently, with no knowledge of the others. Figure 6
shows the number of evaluation paths that successfully reached
the target location versus initial starting distance to target,
where we can see that the paths struggle the most in mid range
(50-100 meters) and each student model varies in performance.
Figure 7 shows the different path lengths found from each
model, of which we see what appears to be a linear relationship
that is independent of student model. Figure 8 shows the total
size of encoded data for each model throughout the path,
where we see the aggregating effects of the larger models –
especially Student-32. Also shown in these figures are that of
the auxiliary model, which we discuss next.

Fig. 6. Number of successful evaluation paths as a function of starting distance
to target location, evaluated on navigation models trained on each of the three
selected student models and the auxiliary model. The legend indicates the
number of channels in the student model. The x-axis is binned with intervals
of 10 meters.

Mean absolute percent error vs data size

Performance

27

Adaptation
Fig. 9. Mean value of the gate control factor c for all successful paths while
using an auxiliary model to adapt and select c at each time step. This model
was trained in a simpler Blocks map then evaluated on this more complex
and realistic map representing a neighborhood: AirSimNH.

over a larger static model, while significantly reducing the data
rate by 95%. Further, our depth models which were used to
extract intermediate features needed for the downstream task
of navigation performed with up 81% mean absolute percent
error when constructing 2D depth maps from a monocular
RGB camera. These models were split and able to outperform
JPEG compression which would otherwise typically commu-
nicate the entire image directly to the edge server rather than
computing part of the DNN on-board the drone. Finally, we
demonstrated that our models trained in a low complexity
simulated environment (Blocks with Microsoft AirSim) were
able to adequately perform when deployed to and evaluated
in a more complex and realistic simulated environment (Air-
SimNH). Thus we have a presented an end-to-end dynamic
multi-branch split DNN for efficient distributed autonomous
navigation, along with accurate depth map estimation from a
monocular camera, that can generalize to adequately perform
in other diverse environments.

REFERENCES

[1] A. Pappalardo, Y. Umuroglu, M. Blott, J. Mitrevski, B. Hawks, N. Tran,
V. Loncar, S. Summers, H. Borras, J. Muhizi, M. Trahms, S.-C. Hsu,
S. Hauck, and J. Duarte, “Qonnx: Representing arbitrary-precision
quantized neural networks,” 2022.

[2] R. Banner, I. Hubara, E. Hoffer, and D. Soudry, “Scalable methods for
8-bit training of neural networks,” 2018.

[3] M. Courbariaux, Y. Bengio, and J.-P. David, “Training deep neural
networks with low precision multiplications,” 2015.

[4] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[5] S. Ahn, S. X. Hu, A. Damianou, N. D. Lawrence, and Z. Dai,
“Variational information distillation for knowledge transfer,” 2019.

[6] A. Mishra and D. Marr, “Apprentice: Using knowledge distillation
techniques to improve low-precision network accuracy,” 2017.

[7] A. Gholami, K. Kwon, B. Wu, Z. Tai, X. Yue, P. Jin, S. Zhao, and
K. Keutzer, “Squeezenext: Hardware-aware neural network design,”
2018.

[8] M. Sapienza, E. Guardo, M. Cavallo, G. Torre, G. Leombruno, and
O. Tomarchio, “Solving critical events through mobile edge computing:
An approach for smart cities,” 05 2016, pp. 1–5.

[9] C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu,
P. Bahl, and M. Philipose, “Videoedge: Processing camera streams
using hierarchical clusters,” in 2018 IEEE/ACM Symposium on Edge

Computing (SEC), 2018, pp. 115–131.
[10] D. Callegaro, M. Levorato, and F. Restuccia, “Seremas: Self-

resilient mobile autonomoussystems through predictive edge
computing,” CoRR, vol. abs/2105.15105, 2021. [Online]. Available:
https://arxiv.org/abs/2105.15105

[11] Y. Matsubara, M. Levorato, and F. Restuccia, “Split computing and early
exiting for deep learning applications: Survey and research challenges,”
ACM Computing Surveys, vol. 55, no. 5, pp. 1–30, 2022.

[12] Y. Matsubara, D. Callegaro, S. Singh, M. Levorato, and F. Restuccia,
“Bottlefit: Learning compressed representations in deep neural networks
for effective and efficient split computing,” in 2022 IEEE 23rd Inter-

national Symposium on a World of Wireless, Mobile and Multimedia

Networks (WoWMoM). IEEE, 2022, pp. 337–346.
[13] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual

and physical simulation for autonomous vehicles,” in Field and Service

Robotics: Results of the 11th International Conference. Springer, 2018,
pp. 621–635.

[14] M. Nakahara, M. Nishimura, Y. Ushiku, T. Nishio, K. Maruta,
Y. Nakayama, and D. Hisano, “Edge computing-assisted dnn image
recognition system with progressive image retransmission,” IEEE Ac-

cess, vol. 10, pp. 91 253–91 262, 2022.
[15] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and

L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” in Proceedings of the Twenty-Second International

Conference on Architectural Support for Programming Languages

and Operating Systems, ser. ASPLOS ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 615–629. [Online].
Available: https://doi.org/10.1145/3037697.3037698

[16] J. S. Assine, E. Valle, M. Levorato et al., “Slimmable encoders for
flexible split dnns in bandwidth and resource constrained iot systems,”
arXiv preprint arXiv:2306.12691, 2023.

[17] Y. Wu and K. He, “Group normalization,” in Computer Vision – ECCV

2018, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds. Cham:
Springer International Publishing, 2018, pp. 3–19.

[18] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-
normalizing neural networks,” in Proceedings of the 31st international

conference on neural information processing systems, 2017, pp. 972–
981.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[20] L. Prechelt, “Early stopping-but when?” in Neural Networks: Tricks of

the trade. Springer, 2002, pp. 55–69.
[21] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[22] A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv

preprint arXiv:1803.08375, 2018.
[23] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxi-

mation error in actor-critic methods,” in International conference on

machine learning. PMLR, 2018, pp. 1587–1596.
[24] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dor-

mann, “Stable-baselines3: Reliable reinforcement learning implementa-
tions,” The Journal of Machine Learning Research, vol. 22, no. 1, pp.
12 348–12 355, 2021.

[25] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[26] A. Kumar, Z. Li, J. Zeng, D. Pathak, K. Sreenath, and J. Malik,
“Adapting rapid motor adaptation for bipedal robots,” in 2022 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2022, pp. 1161–1168.

[27] H. Qi, A. Kumar, R. Calandra, Y. Ma, and J. Malik, “In-hand object
rotation via rapid motor adaptation,” in Conference on Robot Learning.
PMLR, 2023, pp. 1722–1732.

Self-Adaptive Low-Complexity AI

Slimmable Neural Networks

27

Super Network Sub Networks

Knowledge distillation:
sub networks learn to mimic the super network

Networks whose width can be reduced at runtime

To the best of our knowledge, the one presented herein is the
first neural model that fuses universally slimmable networks
with dynamic neural networks to accomplish navigational
goals under severe resource constraints, while exploring dy-
namic sensor scaling, a widely open area of investigation. The
core contribution of this paper is NaviSlim: a novel framework
to design and train neural models that can seamlessly and dy-
namically adapt their characteristics to environmental context
and mission progress to parsimoniously use computation and
sensing resources while maintaining high navigation accuracy.

IV. TEST BED ENVIRONMENT

We train and test our models with a simulation framework
that utilizes Microsoft AirSim [11], a robust drone simulator
that renders physics and graphics in Unreal Engine [12].
AirSim has a Application Programming Interface (API) for
Python, that can be used to communicate with the simulation,
such as: create sensors and acquire observations, issue drone
commands, and detect collisions. We use the AirSim API
to interface with our NaviSlim repository, also in Python,
which includes methods for deep reinforcement learning that
partially utilize the Stable-Baselines3 library [28], neural
network implementations that partially utilize the PyTorch
library [29], and others such as curriculum learning, shortest
path algorithms, supervised learning, knowledge distillation,
logging, customization, and deployment to other environments
including real world drone controllers. Previous studies have
shown capabilities of launching models trained in simulation
into the real world [30], [31] – thus a simulation tool is a robust
means to explore and develop novel model architectures. Using
a simulation also mitigates difficulties in training a model
with real world hardware that would require mechanisms for
episodic deep reinforcement learning.

Fig. 3 shows two maps used by AirSim. The first map
is ”Blocks”, which contains several static objects that have
generic shapes and sizes. The second map is ”City”, which
contains various static and dynamic objects that have specific
shapes and sizes which reflect real world encounters such as
buildings, signs, cars, people, and live traffic.

Fig. 3. Two maps from Microsoft AirSim: on the left is ”Blocks” which
contains static objects with arbitrary shapes and sizes, and on the right
is ”City” which contains both static and dynamic objects expected to be
encountered in the real world.

V. NAVISLIM: DESIGN OVERVIEW

In this section, we provide an overview of NaviSlim, and
will detail the specific components (the navigation and aux-
iliary models) in the next sections. A key novelty is that we

design an auxiliary module to control resource expenditure
(c or s), while the navigation module is used to control drone
motions (n). Thus NaviSlim, f✓, now consists of the navigation
model, g�, and the auxiliary model, h . If a vanilla approach is
taken to train the overall model to simultaneously control both
sensing (input) and computing (intermediate calculations used
by the model), then the learning process is highly unstable
and does not converge to a meaningful control logic – i.e.,
the navigation paths fail when evaluated in the test bed
environment. Thus, our solution is to decouple computing and
sensing into two variants of NaviSlim. We refer to methods
and models related to computing as NaviSlim-C, and those
related to sensing as NaviSlim-S (see Equation (2)):

NaviSlim-C: n = g�(FIFO, c = h (FIFO))

NaviSlim-S: [n, s] = [g�(FIFO), h (FIFO)].
(2)

Note that this structure requires g� and h to be executed in
series for NaviSlim-C, while they can be executed in parallel
for NaviSlim-S.

The overall system NaviSlim model (composed of the
navigation and auxiliary models) is illustrated in Fig. 4. The
”ToVec()” component converts the data acquired from each
depth sensor into preliminary vectors that are then concate-
nated with the GPS data into one feature vector, o, as measured
at time t. This concatenated feature vector is then inserted onto
the FIFO queue as illustrated previously in Fig. 2.

Fig. 4. NaviSlim: our novel solution for a context-aware framework capable
of adapting resource allocation to that which is required by the difficulty of
the current scenario. Shown is our specific implementation. The shapes with
dotted lines represent components capable of adaptable resource allocation.

Dynamic Neural Navigation for Microdrones

28

Auxiliary neural gate controls the slices of a
main navigation model decision by decision
• Number of operations
• Sensor selection and resolution

New architecture realizes a
gated dynamic slimmable network for navigation

Specialized multi-stage training uses
• Knowledge distillation
• Curriculum learning
• Deep reinforcement learning

Dynamic Adaptation

29

• Complexity slimming factors

Fig. 9. Mean results of the different adaptability variables that control various resource allocations as predicted from the auxiliary network, h , over all
values from successful paths in the test set. A larger slim factor, ⇢, corresponds to increased computation costs (we find this to be time and energy with fixed
power) needed to run the navigation network, g�. A larger power level, either pf for the forward facing depth sensor or pd for the downward facing depth
sensor, corresponds to increased sensing costs (proven in literature to be both time and power [25]) needed to acquire observations from the sensor array. The
x-axis shows the mean values returned from each depth sensor, in meters, and is binned at increments of 10 meters (note that some bins are missing, this is
just circumstantial). The mean depth values give context clues to the surrounding environment, and this figure shows how the adaptability variables respond
to them. Note that just for this figure, the displayed mean depth values from each sensor are always calculated using the maximum power levels to best and
uniformly represent the context, even though different power levels are likely used as input into the auxiliary network, h , during evaluation.

Fig. 10. Results after reducing the resources allocated to computing a trained
navigation model, g�. Shown is the Root Mean Squared Error (RMSE),
calculated between the length-optimal navigation motions found from A-star
and those predicted from g�, as a function of the slimming factor, ⇢, used to
control the number of active parameters, m, in g�. Not shown here, is that
m exhibits a quadratic decrease with ⇢.

possible explanation is that when objects are close, higher-
level logic is not needed as the subspace of possible motions,
that can be executed without colliding with that nearby object,
shrinks. Similarly, after about 50 meters, ⇢ begins to decrease
with further increasing measured depth, likely because the en-
vironment becomes more open (less nearby objects and more
open physical space) and the subspace of possible motions
shrinks as more sophisticated maneuvers are not needed.

Next, we measure the actual differences in the resource
cost (time, power, and energy) between using and not using
NaviSlim on a microprocessor similar to that typically de-
ployed on micro-drones. We use a Jetson Nano with a Quad-
core ARM Cortex-A57 MPCore processor and 4 GB 64-bit
LPDDR4 1600MHz 25.6 GB/s memory. We compare relative
resource costs by passing a static set of observations through:
(1) NaviSlim, including both the auxiliary and navigation
modules, with the learned values for ⇢; then (2) only the

Fig. 11. An aerial 2D view of the AirSim Blocks map overlaid with the
average slimming factor, ⇢, predicted from the auxiliary network, h , at each
position. Included in the mean are only values from successful paths, and
only those from the test set. The left panel shows a scenario that we consider
where the drone can only move horizontally, and the right panel shows another
scenario where vertical motion is unlocked. The darker gray shapes indicate
objects the drone can collide with, however note on the right panel the drone
is also flying over these objects.

navigation network but with ⇢ = 1 (i.e., just the static super-
network without the auxiliary network). We measure the ratio
difference between each resource as v�u

v , where u is the
resource cost associated with (1) NaviSlim and v is the resource
cost associated with (2) the super-network. The size of the
auxiliary hidden layers was fixed at [32, 32], while the size of
the navigation hidden layers was varied - as shown in Fig. 12
which shows the relative speedup associated with NaviSlim.

We find that the difference in power consumption is negli-
gible, with a mean relative difference of 0.005 and standard
deviation of 0.07. Since energy consumption is power multi-
plied by time, this shows that execution time is the dominating
factor in energy consumption. Note that reducing execution

Fig. 12. Test set results ran on a Jetson Nano to measure the relative speedups
between using and not using NaviSlim, as a function of navigation network
size – while using a fixed auxiliary network that has 2 hidden layers with
32 nodes in each. A speedup of zero (black grid spaces) indicates that using
NaviSlim takes more time to run than not using it, which is expected for
smaller navigation network sizes due to the overhead of the auxiliary network.

time of the navigation network also improves reaction time.
Fig. 12 shows that smaller networks can actually result in
increased execution time when using NaviSlim – as indicated
by the lower left corner with black grid spaces. This behavior
is expected, since the overhead of the auxiliary network does
not justify the small size of the navigation network. However,
larger networks result in decreased run times - as indicated by
the upper right corner with non-black grid spaces. This region
is characterized by a positive speedup and also overlaps with
the region with lowest navigation error as shown in Fig 7. This
proves that we can mitigate the larger execution times inherent
with larger neural networks, which is needed to achieve lower
navigation error, by using NaviSlim – noting that this speedup
increases with size of the navigation network. Note that the
learned values of ⇢ are static for our tests in Fig 12 to those
learned when using a navigation network with hidden layer
sizes of [64, 32, 32], due to time constraints and the large
amount of time needed to train the auxiliary network. We
consider these learned ⇢ values to be the worst case scenario
for any navigation networks larger than the one considered.

Next we evaluate NaviSlim-S which dynamically controls pf
and pd, the power levels of the forward facing depth sensor
and downward facing depth sensor, respectively. Table I lists
the average resolution levels for scenarios (2) and (3) after
evaluating the trained auxiliary model, h , with the test set.
The mean value of pf is greater than pd for each scenario,
which is intuitive because most drone maneuvers involve
moving horizontally rather than vertically. When using only
horizontal motion, the downward facing depth sensor is almost
completely turned off, with a mean pd value of 0.73.

Fig. 13 and Fig. 9 show the learned sensor power levels
between the two scenarios as a function of context. From
Fig. 9, we see that pf is independent of the downward
depth sensor observations, but has a clear dependence on the
forward depth sensor observations – which is most intuitive.
Interestingly, as the values returned from the forward depth

sensor increase (indicating forward facing objects are further
from the drone) so does pf , which is a similar relationship we
earlier observed with ⇢ – warranting that less resources are
required when an object(s) is very near the drone. We observe
another intuitive relationship that pd increases as the values
returned from the downward depth sensor increase (indicating
the drone is relatively higher in the air than objects below
it). This relationship holds until the mean downward depth
reaches some critical point at which pd then decreases.

Fig. 13. An aerial 2D view of the two AirSim maps overlaid with the
respective power levels, pf and pd, corresponding to the forward and
downward facing depth sensors as predicted from the auxiliary network, h ,
at each position. Included in the calculations of each mean value are only
those from successful paths in the test set. The left panels show results on
the Blocks map with vertical motion unlocked. The right panels show results
on the City map with vertical motion locked. The darker gray shapes indicate
objects, however note that on the left panels the drone is also flying over these
objects and some objects on the right panels are moving with time.

IX. CONCLUSIONS

We presented NaviSlim, the first of its kind to dynamically
scale computing and sensing used by a neural model for nav-
igation of a (micro-)drone with extreme resource constraints.
We detailed the training procedure used to obtain successful
models that can safely navigate between points A and B,
while using variable computing and sensing. We showed that
an auxiliary neural network can successfully learn to map
context to computing and sensing required by the difficulty
of the current scenario. This is a novel evolution over static
networks that must match computing and sensing of that
required by the most difficult scenario. We showed that when
deploying NaviSlim to our test bed environment interfaced
with the drone simulation tool Microsoft Airsim, we reduced
average navigation model complexity between 57% and 82%,
and sensing power levels between 61% and 80%, as compared
to that of the static navigation network required to fulfill the

• Sensing slimming factors

Dynamic Slimmable Networks

30

• Runtime adaptation
• Context AND system-aware
• Designed to be distributed (slimmable encoders are a component of it)

System Logger

Sys. MLP Sys. MLP Sys. MLP

Gate 1 Gate 2 Gate 3

System level features System level features System level features

Output Combination Output Combination Output Combination

Input Slimming factor

Layer Block 1 Layer Block 2 Layer Block 3

Slimming factor

Output

Slimming factor

Vision

Camera
Input

Wireless Channel
Supervised

Slimmable Encoders

LiDAR
Input

G
at

e

G
at

e

G
at

e

AI-Module

Camera
Input G

at
e

Supervised
Slimmable Encoder

Slimmable
DRL tail

Autonomous Navigation
and Data Acquisition

Cubesat

Airborne
Autonomous

Vehicle W
ire

le
ss

 C
ha

nn
el

AI-Module

AI-Module

Slimmable
DRL tail

Autonomous
NavigationG

at
e

AI-Module

Ground Autonomous
Vehicle

Layered Collaboration

FlexAI - Lightweight Swarm Intelligence

Camera
Input G

at
e

Lightweight Adaptive
Compression and Fusion

AI-Agent

Camera
Input G

at
e

Lightweight Adaptive
Compression and Fusion

AI-Agent

Camera
Input

G
at

e

Lightweight Adaptive
Compression and Fusion

AI-Agent

LiDAR
Input

G
at

e

Adaptive Decoder and
Multi-Task Models

AI-Agent

3D Mapping and
Localization

Object Detection

Semantic Segmentation

Wireless
Links

C

Dynamic Distributed Computing for
Autonomous Vehicles in 5G Infrastructures

Marco Levorato
Professor

CS - University of California, Irvine
levorato@uci.edu

