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Dynamic, Distributed and Resilient Computing

for Extreme Mobile Applications
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Dynamic, Distributed and Resilient Computing

for Extreme Mobile Applications
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Challenge

Mismatch between computing needs (e.g., continuous stream of complex
computing tasks), requirements (accuracy, latency) and resource

availability (energy, computing power)
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Multi-Faceted Challenge

( Algorithm level

Split, dynamic, multi-branched models
designed for efficiency and and
distributed execution

Device-level

Context-aware computing strategies
and semantic communication

strategies

Infrastructure-level
Al for semantic network and edge
slicing, generalization and knowledge

accumulation
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Autonomy Stack
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Concatenation of complex Modules (often neural networks)
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Autonomous cars and other large vehicles can support the stack,
at the price of an increased cost and power expense
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What if we want to empower small scale vehicles with
advanced autonomy functionalities!?

Defense

Logistics



Or even just advanced computer vision...

Traffic/City Monitoring

e




Objectives and Approach

Dynamic-Distributed Al pipelines that adapt to
data and system context



Objectives and Approach

Dynamic-Distributed Composable Al pipelines
that adapt to data and system context
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Objectives and Approach

Dynamic-Distributed Composable Al pipelines
that adapt to data and system context

3D Mapping and
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Hydra - Testbed

¢ Middleware for Al-controlled dynamic edge computing

¢ Airborne and ground autonomous vehicles connected to multiple edge servers
® Real-time telemetry, network and application logging for decision making

¢ Control of how many and which edge servers

FLIGHT ZONE

Datacenter




Hydra - Testbed Current development

Advanced comms Indoor-Outdoor Navigation
e MU-MIMO comms ® Dynamic reconfiguration of autonomy stack
e Semantic control of comms parameters across “layers”

(bandwidth, number of antennas, connectivity) ® Dynamic neural sensor fusion

and packetization (replication vs parallelization)
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Preliminaries



Problem lllustration

Stream of data from multiple sensors to be analyzed to support
mission functions and autonomous navigation

Tasks
Sensor Analysis
Image - Object detection
A 8 vy -> =» . Image Segmentation
% ST - Image Classification
- - Planning

Control
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Onboard Computing

Mobile Device

“Compressed” models deployed on the vehicle/robot
Quantization, distillation, pruning




Onboard Computing

Mobile Device

e Hardware cost
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Mobile Device

e Hardware cost

* Task performance
* Model compression
* Tradeoff between MAP/latency
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Onboard Computing
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e Hardware cost

* Task performance
* Model compression
* Tradeoff between MAP/latency
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Onboard Computing
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e Hardware cost

* Task performance
* Model compression
* Tradeoff between MAP/latency

°* Energy
e Hardware Degradation
e Limited functionalities




Edge Computing

Mobile Device Edge Server

Wireless
Channel

Data sent to a compute-capable device taking over the tasks




Edge Computing

Mobile Device Edge Server

Wireless
Channel

 Latency/Latency variance




Edge Computing

Edge Server

Mobile Device

Wireless
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Edge Computing

Mobile Device / Edge Server

Wireless
Channel

s Latency/Latency variance
* Uncertainty




Edge Computing

Mobile Device Edge Server

Wireless
Channel

s Latency/Latency variance
* Uncertainty

e Bandwidth usage
* Sharing with other users and services




Edge Computing

Mobile Device 7 Edge Server

Wireless
Channel

s Latency/Latency variance
* Uncertainty

* Bandwidth usage
* Sharing with other users and services

e Hardware degradation
e Servers are more resilient




Distributed Al



Compression

Mobile Device

Wireless

JPEG Channel

Mobile Device

Wireless
Channel

JPEG

* Low complexity
* Bad rate-distortion curve (high compression gain)
* Designed for human perception




Compression

Mobile Device

Wireless

JPEG Channel

Mobile Device

Wireless
Channel

Neural Encoders

* High complexity (mobile device and server)
* High performance

* Designed to reconstruct the input image




Split Deep Neural Networks

ted DNN
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Split Deep Neural Networks

ted DNN
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Supervised Compression

Input Image Bottleneck

Prediction
llbird"

Decoder Classifier
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* Encoder/decoder-like structure within the model
* Semantic in-model compression obtained at the splitting point
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Performance

Rate-Distortion-Complexity Curve
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Bit Allocation

Input images

SC vs. IC

Visualization: bit allocation with respect to a variational autoencoder




Multi-Branched Split Architecture



Dynamic Neural Network for Autonomous Vehicles

- ME* Full Tail . receive control values
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Local and Edge pipelines dynamically selected based on sample
and system parameters

* Computing path dynamically controlled by a lightweight Al agent

* Predictive logics based on DRL




Dynamic Neural Network for Autonomous Vehicles
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Split Self-Adaptive Al for Navigation



NaviSplit

Navigation problem: nano/microdrone autonomously
determines path to reach point B from point A in an
unknown environment




NaviSplit

?i Input: (a) GPS, (b) RGB image (no depth)




NaviSplit
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Two neural models:

* Depth estimation: neural model transforms the RGB image into a
depth map

* Navigation: neural model transforms the depth map into motion
commands
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NaviSplit

Supervised training based on knowledge distillation to split
the depth estimation model

teacher

X : sensor Y : task
: : task model
observation J » output
- compressed
student P

split point

X : sensor
observation

output

f*: tail with decoder
f!: head with encoder




NaviSplit

X : RGB image [*

e Our solution:
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Performance

Depth MAPE

—$— Baseline
¥— JPEG a
0309 T Bottleneck V1

- —4— Bottleneck V2

=

[\

N
L

0.20 -

0 5 10 15 20
Compressed Data Size [kb]

Mean absolute percent error vs data size




Performance
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Self-Adaptive Low-Complexity Al



Slimmable Neural Networks

Networks whose width can be reduced at runtime

Super Network Sub Networks
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Knowledge distillation:
sub networks learn to mimic the super network
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Dynamic Neural Navigation for Microdrones

New architecture realizes a
gated dynamic slimmable network for navigation
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Auxiliary neural gate controls the slices of a
main navigation model decision by decision
* Number of operations

* Sensor selection and resolution

Specialized multi-stage training uses
* Knowledge distillation

* Curriculum learning

* Deep reinforcement learning




Dynamic Adaptation
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* Complexity slimming factors

* Sensing slimming factors




Dynamic Slimmable Networks

System Logger

* System level features * System level features * System level features

Sys. MLP Sys. MLP Sys. MLP
Output Combination Output Combination Output Combination

Input Slimming factor Slimming factor Slimming factor

C m @ O utput
H 883 | BBl L8B3 =
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* Runtime adaptation
* Context AND system-aware
* Designed to be distributed (slimmable encoders are a component of it)







Layered Collaboration
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FlexAl
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