Dynamic Distributed Computing for Autonomous Vehicles in 5G Infrastructures

Marco Levorato

Professor CS - University of California, Irvine levorato@uci.edu

Earth Day Workshop 2024

Marco Levorato Professor University of California, Irvine Computer Science Dept.

Faculty - Computer Science

University of California, Irvine

PostDoc - Electrical Engineering

Stanford University University of Southern California

Ph.D - Telecommunication Engineering

University' degli Studi di Padova (Italy)

Marco Levorato Professor

University of California, Irvine Computer Science Dept.

Intelligent and Autonomous Systems Lab

Dynamic, Distributed and Resilient Computing for Extreme Mobile Applications

Autonomous cars

Smart manufacturing

Autonomous drones

Augmented Reality

Collaborative robots

Mobile HealthCare

Funded by

Dynamic, Distributed and Resilient Computing for Extreme Mobile Applications

Autonomous cars

Smart manufacturing

Augmented Reality

Collaborative robots

Mobile HealthCare

Challenge

Mismatch between **computing needs** (e.g., continuous stream of complex computing tasks), **requirements** (accuracy, latency) and **resource** availability (energy, computing power)

Multi-Faceted Challenge

Algorithm level

Split, dynamic, multi-branched models designed for efficiency and and distributed execution

Device-level

Context-aware computing strategies and semantic communication strategies

Infrastructure-level

Al for semantic network and edge slicing, generalization and knowledge accumulation

Autonomy

Autonomy Stack

Concatenation of complex Modules (often neural networks)

Autonomous cars and other large vehicles can support the stack, at the price of an increased cost and power expense

Autonomous cars and other large vehicles can support the stack, at the price of an increased cost and power expense

What if we want to empower small scale vehicles with advanced autonomy functionalities?

Defense

Delivery

Logistics

Or even just advanced computer vision...

Low-orbit monitoring

Traffic/City Monitoring

Objectives and Approach

Dynamic-Distributed AI pipelines that adapt to data and system context

Objectives and Approach Dynamic-Distributed Composable AI pipelines

that adapt to data and system context

Objectives and Approach Dynamic-Distributed Composable Al pipelines that adapt to data and system context

- Middleware for Al-controlled dynamic edge computing
- Airborne and ground autonomous vehicles connected to multiple edge servers
- Real-time telemetry, network and application logging for decision making
- Control of how many and which edge servers

Advanced comms

- MU-MIMO comms
- Semantic control of comms parameters (bandwidth, number of antennas, connectivity) and packetization (replication vs parallelization)

Indoor-Outdoor Navigation

- Dynamic reconfiguration of autonomy stack across "layers"
- Dynamic neural sensor fusion

Preliminaries

Problem Illustration

Stream of data from multiple sensors to be analyzed to support mission functions and autonomous navigation

"Compressed" models deployed on the vehicle/robot Quantization, distillation, pruning

• Hardware cost

• Hardware cost

• Task performance

- Model compression
- Tradeoff between MAP/latency

• Hardware cost

Task performance

- Model compression
- Tradeoff between MAP/latency
- Energy

• Hardware cost

• Task performance

- Model compression
- Tradeoff between MAP/latency
- Energy
- Hardware Degradation

• Hardware cost

• Task performance

- Model compression
- Tradeoff between MAP/latency
- Energy
- Hardware Degradation
- Limited functionalities

Data sent to a compute-capable device taking over the tasks

Edge Computing

• Latency/Latency variance

Edge Computing

Time (s)

Edge Computing

Latency/Latency variance
Uncertainty

- Latency/Latency variance
- Uncertainty
- Bandwidth usage
 - Sharing with other users and services

- Latency/Latency variance
 Uncertainty
- Bandwidth usage
 - Sharing with other users and services
- Hardware degradation
 - Servers are more resilient

Distributed AI

Compression

JPEG

- Low complexity
- Bad rate-distortion curve (high compression gain)
- Designed for human perception

Compression

Neural Encoders

- High complexity (mobile device and server)
- High performance
- Designed to reconstruct the input image

Split Deep Neural Networks

Trivial Split DNN

- Distribution of computing load
- Compression only if split point is toward the end of the model
- Optimal latency often at extreme point

Split Deep Neural Networks

"Artificial" Bottleneck

- Architecture altered to incorporate a bottleneck (in-model compression)
- Objective: minimal complexity maximum compression maximum task performance
- Specialized training

Supervised Compression

• Encoder/decoder-like structure within the model

• Semantic in-model compression obtained at the splitting point

Training

Stage 1: Encoder/Decoder Training

Stage 2: Fine-Tuning to Task

Multistage Training

- Encoder-decoder trained to reproduce an intermediate layer of the original model
- Supervised task-oriented compression: representation if trained to shed irrelevant bits

Performance

Rate-Distortion-Complexity Curve

Bit Allocation

Visualization: bit allocation with respect to a variational autoencoder

Multi-Branched Split Architecture

Local and Edge pipelines dynamically selected based on sample and system parameters

- Computing path dynamically controlled by a lightweight AI agent
- Predictive logics based on DRL

Dynamic Neural Network for Autonomous Vehicles

- Architecture automatically generated using Neural Architecture Search based on system parameters
- Optimized position and shape of the bottleneck

Split Self-Adaptive AI for Navigation

Navigation problem: nano/microdrone autonomously determines path to reach point B from point A in an unknown environment

Input: (a) GPS, (b) RGB image (no depth)

Two neural models:

- **Depth estimation:** neural model transforms the RGB image into a depth map
- Navigation: neural model transforms the depth map into motion commands

Supervised training based on knowledge distillation to **split** the depth estimation model

Our solution:

- Split depth estimation: depth model is split to minimize data transmission and computing effort at the drone
- **Navigation:** neural model transforms the depth map into motion commands
- Adaptation: auxiliary neural model takes mission parameters and depth map as input to determine the optimal representation

Performance

Mean absolute percent error vs data size

Self-Adaptive Low-Complexity Al

Networks whose width can be reduced at runtime

Knowledge distillation: sub networks learn to mimic the super network

Dynamic Neural Navigation for Microdrones

New architecture realizes a gated dynamic slimmable network for navigation

Auxiliary neural gate controls the slices of a main navigation model decision by decision

- Number of operations
- Sensor selection and resolution

Specialized multi-stage training uses

- Knowledge distillation
- Curriculum learning
- Deep reinforcement learning

Dynamic Adaptation

• Complexity slimming factors

• Sensing slimming factors

- Runtime adaptation
- Context AND system-aware
- Designed to be distributed (slimmable encoders are a component of it)

Vision

Layered Collaboration

FlexAI - Lightweight Swarm Intelligence

Dynamic Distributed Computing for Autonomous Vehicles in 5G Infrastructures

Marco Levorato

Professor CS - University of California, Irvine levorato@uci.edu