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UNDERSTANDING OF CLIMATE




WE LIVE IN A CHANGING WORLD!

from IPCC report (2021), WGl
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IN OUR BACKYARD!

Observed U.S. Precipitation Change
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WHY IS IT HAPPENING?
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ARE WE RESPONSIBLE?

FAQ 3.1: How do we know humans are causing climate change?
Observed warming (1850-2019) is only reproduced in simulations including human influence.
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HOW ARE THESE RESULTS DERIVED?

Conclusions and predictions for the planet are obtained using
climate models.

Climate models are deterministic models that represent all

the geophysical processes that contribute to determine
climate on Earth.

The are based on systems of partial differential equations
representing the laws that govern the motion of fluids, also
called the governing equations of the atmosphere.The

number of equations vary depending on the complexity of the
model.

The equations are solved using numerical approximations.



CLIMATE MODELS
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CLIMATE MODELS
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CLIMATE MODELS
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CLIMATE MODELS: THEN AND NOW

Mid-1970s  Mid-1980s FAR SAR TAR AR4 AR5
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MY WORK WITH CLIMATE MODELS

Have been working with climate models, or related

models (numerical weather prediction models), since my
PhD days.

My work has been focused on:
assessing and evaluation the output of the models

postprocessing the output of the models

studying the inputs of the models

coming up with strategies for improving the inputs of
the models



ASSESSMENT OF A REGIONAL CLIMATE MODEL

Outputs of global climate model (GCMs) are provided over large spatial domains at a coarse spatial resolution.

Regional climate models (RCMs) operate over a smaller spatial domain and can capture local processes better.
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ASSESSMENT OF A REGIONAL CLIMATE MODEL

Assessing a climate model is not a trivial task

climate, being the distribution of weather and other climatic factors over long periods of
time, cannot be measured directly

usually long-term observational averages are compared to the climate model output. But
the spatial resolution of the two is not the same!

When assessing an RCM there are two sources of discrepancies:
inadequacy in the model itself (the equations, the methods used to solve them, etc);

inadequacy in the initial and boundary conditions provided to the model.

In our study, we control for the second so that we can make statements about the model
itself.



DATA: RCM OUTPUT

Output from an RCM
run at the Swedish
meteorological center

2-m daily average
temperature, averaged to
yield quarterly average
temperature. Period:

December I, 1962 to
November 30, 2007.

Output available at
| 2.5km x 12.5km
resolution
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DATA: OBSERVATIONS

Observations of daily

Observation data: DJF 2002

temperature available from
| 7 stations over the same

period, December |, 1962

to November 30, 2007.

We used |5 stations to
develop our statistical
models and 2 stations to
validate the model out-of-
sample.
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Locations of the observational data
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Centroids of the climate model runs
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DIFF
ERENCE IN SPATIAL RESOLUTION

observations have
different spatial

The RCM output and
resolution.
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A FIRST COMPARISON

Obs. quarterly avg. temp. Obs. quarterly avg. temp. Obs. quarterly avg. temp.
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DOWNSCALING MODEL

RCM output: DJF 2002
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DOWNSCALING MODEL
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DOWNSCALING MODEL
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DOWNSCALING MODEL
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RESULTS

Assessment of predictions
at the two hold out sites:
Borlange and Stockholm.

Black line: observation
Red line: RCM output
Magenta line: Upscaling
model

Blue line: Downscaling
model
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RESULTS

Assessment of predictions
at the two hold out sites:
Borlange and Stockholm.

Black line: observation
Red line: RCM output
Magenta line: Upscaling
model

Blue line: Downscaling
model
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RESULTS

Downscaling — Climate: Winter 2002 Upscaling — Climate: Winter 2002
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CONCLUSIONS

Predictions from the downscaling model agree more with the
RCM output than predictions generated from the upscaling
model.

Upscaling predictions are than the RCM output in the
North and in the South.

In the extreme quarters, both the downscaling and the upscaling
model tend to predict than the RCM.



ANOTHER RCM ASSESSMENT: LOOKING FOR
SYSTEMATIC PATTERNS

In a different project, we looked
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ANOTHER FORM OF RCM ASSESSMENT:
LOOKING FOR SYSTEMATIC PATTERNS

For each year t, we looked at
the differences between the x
RCM output and the predicted |
average temperature by our 3
downscaling model.We call this ) § &
the for year :
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RESULTS

Probability that the RCM
errors for average
temperature in Winter for
two specific years cluster
together, e.g. are very
similar.

Year 1963-2007
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RESULTS

Probability that the RCM
errors for average
temperature in Spring for
two specific years cluster
together, e.g. are very
similar.

Year 1963-2007

Spring

Year 1963-2007




RESULTS

Probability that the RCM

errors for average
temperature in Summer for

two specific years cluster
together, e.g. are very
similar.

Year 1963-2007

Summer

Year 1963-2007




RESULTS

Probability that the RCM
errors for average
temperature in Fall for two
specific years cluster
together, e.g. are very
similar.

Year 1963-2007

Fall
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RESULTS

20 12 14 16 18 20

Longitude

(a) RCM output (b) Predicted average

Examining the RCM spatial error for Fall 2002.

(c) Difference



CONCLUSIONS

The type of errors made by the RCM were more similar in
the last |2 years in the period 1962-2007.

The probability that the RCM spatial errors were similar was
particularly high in and

Examining the pattern, we determined that the RCM
systematically underestimated average temperature in the
North and overestimated average temperature in the South in
the last |2 years.



IMPROVING THE INPUT TO CLIMATE MODELS

Global climate model represent various geophysical processes and
the evolution in time of these processes.

They need to be initialized with information of the initial state of
the system.

Often there is not enough amount of information available on the
state of the system. This is particularly true for variables for which
collecting information is time-consuming (e.g. soil variables).



IMPROVING THE SAMPLING OF SOIL ORGANIC
CARBON

A variable that is very important to describe
the carbon cycle is soil organic carbon.

refers to the
fraction of carbon in the soil that is exclusive
of non-decomposed plants and animal
residues.

SOC is a very important variable used as input
in climate models.

However, since collecting soil organic carbon
is time consuming not much data is available.

We want to determine where to

concentrate sampling efforts for soil
organic carbon.

ATMOSPHERIC
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FAO



DATA

* We used data collected on
SOC in 2010-2012 by the
US Department of
Agriculture.

* We developed a spatial
model to learn about
variations in the spatial
dependence structure of

SOC.
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RESULTS
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Future sampling efforts should be concentrated in the region in (b) with a blue
boundary.



OVERALL CONCLUSIONS

Climate models are fundamental and necessary to study future
climate, understanding the impact of climate change on the
ecosystem and humans and determining adaptation measures.

Climate models are complex deterministic mathematical models
that rely on an incredible amount of information.

Assessing the reliability of climate models is important for future
projections.

Understanding the sources of inadequacy in climate models is of
vital importance.

Improving the quality of input data to climate models is necessary
to reduce the uncertainty and errors of climate models.



