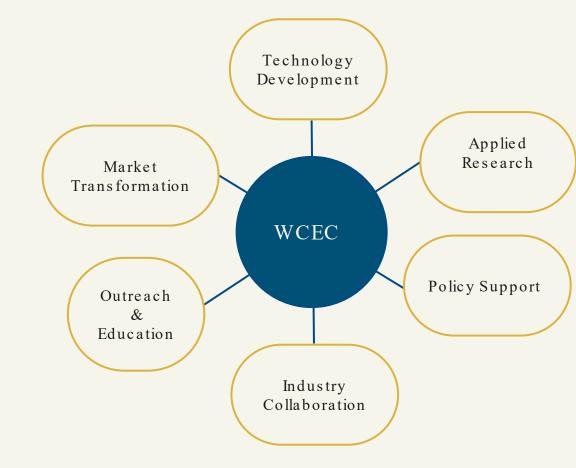
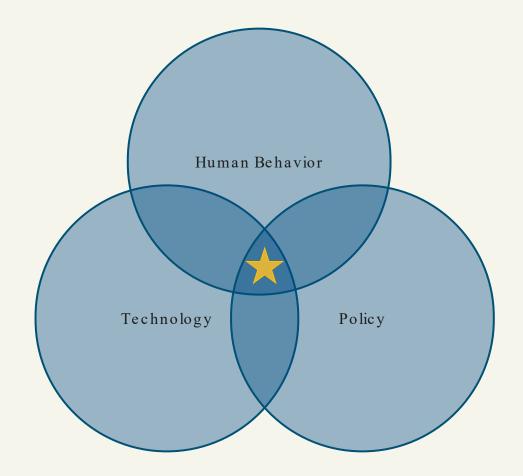
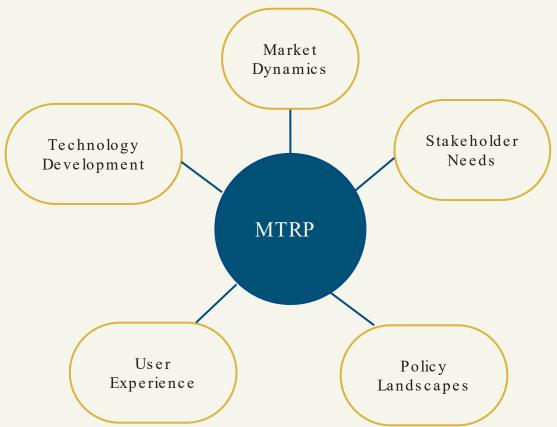
CalPLUG Presents


From Barriers to Breakthroughs: Social Science Insights for Accelerating Heat Pump Adoption in California

Presented by: Dr. Sarah Outcault University of California, Davis



Western Cooling Efficiency Center (WCEC)



Driving transition to a clean energy society

Market Transformation Research Program (MTRP)

MTRP team

Sarah Outcault, PhD

Director

Eli Alston - Stepnitz

Angela Sanguinetti, PhD

Ellian Eorwyn

Emily Searl

Cinthia Magaña

Shahar Zach

Our heat pump studies

Topics

- Market assessment
- Utility & other programs
- Stakeholder needs
- Customer concerns
- Technology characteristics & adoptability

Methods

- Quantitative modeling
- Qualitative interviews
- Surveys
- Case studies
- Landscape & text analysis
- User experience

Deliverables

- Market reports
- Policy reports
- Conference & journal papers
- Research reports
- Databases

Funders

- California Energy Commission (CEC)
- CalNEXT
- U.S. Department of Energy
- New Energy & Industrial Technology Development (NEDO) of Japan
- Panasonic

Agenda: What are the barriers and opportunities for heat pump adoption?

Background/ Policy

- California goals
- GHG emissions
- Heat pump & related policy

Technology Development

- Low GWP refrigerant
- Variable speed HPs
- Multi-function HPs
- Air-to-water HPs

Market Barriers

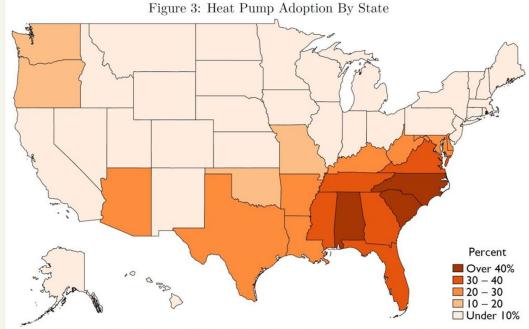
- Initial costs
- Operating costs
- Market availability

Technology Characteristics

- Trialability
- Observability
- Complexity
- Non-energy impacts

Global heat pump markets

Source: Grand View Research. Heat Pump Market Size, Share & Trends Analysis Report By Technology (Air Source, Water Source), By Capacity (Up To 10 kW, 10 To 20 kW), By Operation Type (Electric, Hybrid), By Application, By Region, And Segment Forecasts, 2024 – 2030 https://www.grandviewresearch.com/industry-analysis/heat-pump-market

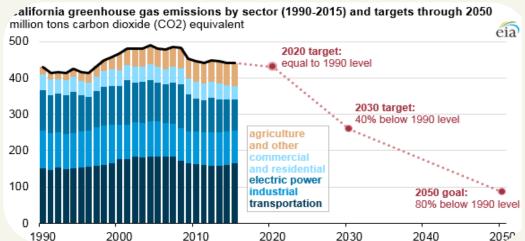


Source: Federal Ministry for Economic Affairs and Climate. https://www.bmwk-energiewende.de/EWD/Redaktion/EN/Newsletter/2023/09/Meldung/direkt_view.html

Heat pump installations vary by state

Figure 3: Heat Pump Adoption By State

Note: This map plots the percent of households in each state that have a heat pump as their primary heating equipment. These data come from the U.S. Department of Energy, *Residential Energy Consumption Survey 2020*. Households are weighted using RECS sampling weights.

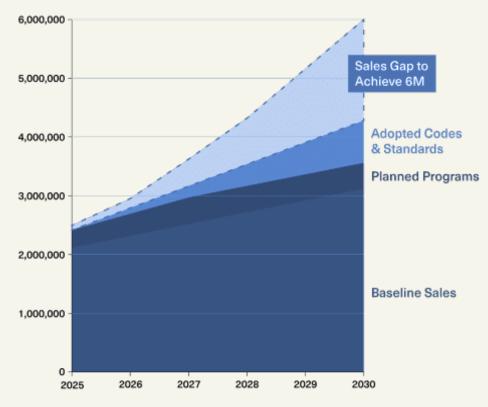


Heat pump policy & goals

- GHG emissions to 40% below 1990 levels by 2030 (AB 32; SB 32)
- Carbon neutrality by 2045 (AB 1279)
- Use load shifting to make up to 7,000 megawatts (MW) of electricity by 2030 (CEC; SB 846)

Heat pumps = keystone

- Highly efficient all -electric systems
- Enable load flexibility
- Provide heating and cooling
- Provide hot water heating



Heat pump installation rates (CA)

- 5% of CA homes have space conditioning HPs
- 2% have water heating HPs
- 2M short of 6M by 2030 goal

Market Transformation Research Program

Projected California Heat Pump Installs by 2030

Source: https://heatpumppartnership.org/wp-content/uploads/2025/03/CAHPP_Blueprint_2025.pdf

Heat pump policy

Pro-heat pump

- Goal to install 6 million heat pumps by 2030 (CAHPP)
- Targeting 80% of appliance sales in California to be electric by 2030 and 100% by 2035 (CARB 2022)

Anti-emissions

- Ban on new natural gas-powered water and space heaters by 2030 (CARB 2022)
- All appliances in new residential construction be electric starting in 2026 (CARB 2022)

Tech Characteristics

Economic

- Initial investment
- Operating cost
- Return on investment
- Market availability

Technical

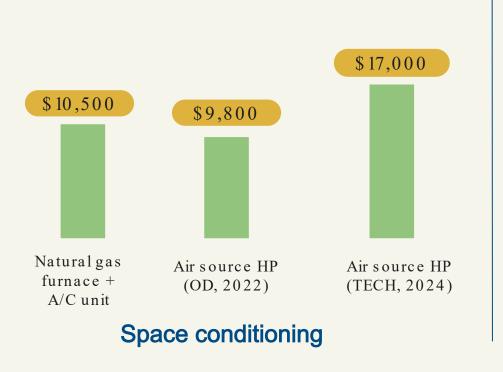
- Technical compatibility
- Performance
- Complexity of installation, use, and maintenance
- Energy Savings

Informational

- Observability
- Trialability

Externalities

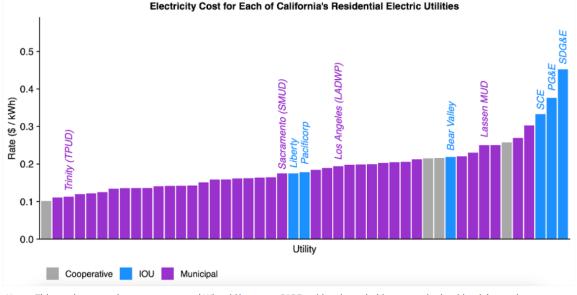
- Environmental impacts
- Non-energy impacts


Assessment of ASHPs

	Technology characteristics	Assessment				
Economic	Initial investment	High	Medium	Low		
	Operating costs	High	Medium	Low		
	Return on investment	Low	Medium	High		
	Market availability	Low	Medium	High		
Technical	Technical compatibility	Low	Medium	High		
	Performance	Low	Medium	High		
	Complexity of installation	High	Medium	Low		
	Complexity of use	High	Medium	Low		
	Complexity of maintenance	High	Medium	Low		
	Energy savings	Low	Medium	High		
Informational	Observability	Low	Medium	High		
	Trialability	Low	Medium	High		
Externalities	Environmental impacts (negative)	High	Medium	Low		
Externanties	Non-energy impacts (positive)	Low	Medium	High		
Adoptability						

Initial cost

Why are heat pumps so expensive in CA?



Operating cost

Mitigation strategies:

- Heat pump electricity rates
- High efficiency
- Solar

Notes: This graph reports the average cost per kWh paid by a non-CARE resident household on a standard residential rate who consumes 500 kWh/month. Ry includes volumetric prices and any fixed charges in these calculations. Links to rate structure details are included below. This link contains the source for all rate tariff information.

Source: https://energyathaas.wordpress.com/2023/07/10/not -all-of-californias -electricity -prices -are-high/

Market availability

Workforce Engagement

Contractors are vital source of information for customers

Contractors are gatekeepers

Contractor Reluctance

Hesitant to Recommend

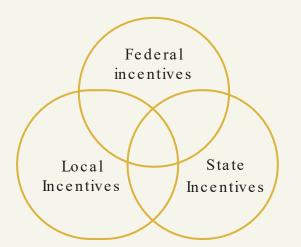
Contractors unwilling to recommend unfamiliar technology

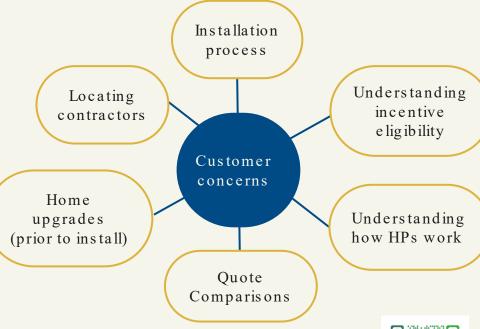
Negative Perceptions

Contractors may recall older, poorly performing HPs

Workforce Shortage

More HVAC installers, electrician and plumbers (with HP training) needed




Source: https://techcleanca.com/about/news/heat-pumps transforming-the-way-contractors-do-business/

UCDAVIS Market Transformation Research Program

Complexity of installation

Addressing the complexity of installation

- Educational resources and tools (FAQs, tip sheets, online resources)
- Interactive decision making support (heat load calculator, rebate eligibility screening)
- Holistic service models (quote comparison, one-stop shop)

Source: http://hotwatersolutionsnw.org/is -it-right-for-you

Increasing observability

- Displaying signs in public spaces
- Educational resources explaining how HPs work
- Engaging HP owners to educate through home visits and testimonials

Background: https://singingriver.com/wp -

content/uploads/2018/01/smepa_ca_bklt_12 -2-2015-web-1.pdf

Top Left: https://www.visitaheatpump.com/

Bottom right: https://www.canarymedia.com/articles/heat -pumps/heat -pump-coaches -help -neighbors -ditch -fossil -heat-in-Massachusetts

Addressing low trialability

- Passive exposure
 - AirBNB
 - Dance club
- Virtual interaction
 - online demo
- Active exposure
 - tiny home
 - home visits
 - showrooms
- Home test
 - HP rental
 - portables

https://wattsmarthomes.com/heatpump-comfort/

In the winter, a heat pump extracts heat from the outside air (it can collect heat even in cold weather) and transfers it inside to heat your home.

Got it

Non-energy impacts

...on occupants, users, community, society, and environment...

It is often the non-energy benefits that motivate...decisions to adopt energyefficient technologies.
- Mills & Rosenfeld (1996)

Cleaner & Greener

Convenience

Temperature Control

Comfort

Safety

Non-energy impacts		Occupant impacts					
		Physiological	Psychological	Economic	Practical	Sociological	
Functional outcomes	Spatial						
	Thermal		+	+	+	+	
	Air 🖺			+	+	+	
	Acoustic (+	+	+	
	Visual						
	Building Integrity						• • • • • • • • • • • • • • • • • • •

Future Research

Technology Developments

Heat Pump Advancements Load Flexibility

Variable speed

Optimizing heat pump controls

Multifunctional

Ultra-low GWP refrigerants

Air-to-water

Workforce

Engagement

Raising

awareness

Cultivating heat pump

ambassadors

Training

Installation

New

refrigerants

Customer education

Customer Considerations

Ease of Access

Customer Leve

education

Trialability

Affordability of installation and operation

Financial incentives

Bene fits
Leveraging

Highlighting

non-energy

benefits

Promoting

load flexibility

Thank you!

UCDAVIS

Market Transformation
Research Program

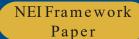
Please visit our website at:

https://energy.ucdavis.edu/market-transformation-research-program/

MTRP Website

HP Programs
Database

Or scan the QR codes to go directly to some of our recent research papers!



Barriers & Opportunities for HP Adoption

Tech Characteristics

Harnessing NEIs

HP Programs
Report

