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The importance of TES
Challenge of the fluctuating electricity demand 
(duck curve/camel curve)
• Midday dip: low demand with over-generated solar
• Evening spike: rapid increase of demand without solar

Solution: 
Energy Storage can perform as a buffer for 

the mismatch of energy demand and supply

Thermal Energy Storage (TES)

• High storage capacity (scalability)
• Long-term energy storage capability 

(days to months)
• Low fabrication and maintenance cost
• High energy efficiency for meeting 

thermal demands



Application of TES
Industrial applications Building sectors

• Larger-scale systems (MWh to GWh)
• High operational temperature range 

(100°C to 1000°C)
• Charging/discharging cycles ranging 

from hours to months 

• Small-scale systems (kWh to MWh)
• Low operational temperature range 

(below 100°C)
• Usually in daily charging/discharging 

cycles

Requires customized 
design for each TES 
system based on 
different operational 
conditions and 
demand needs



Design and performance prediction of TES

Determine storage 
capacity (capacity, 

duration)

Choose type of 
storage system, 
material type of 
media and HTF

Design shape and 
dimensions of the 

system

Design 
procedure:

Compare 
system output 
with demand

Evaluate storage 
performance, 

charging/discharging 
efficiency

Apply operating 
conditions (energy 

input)

Performance 
prediction:

Achieved by finite 
element analysis 
(FEA)

One simulation 
could take hours 
to days!

Traditional approach

Is it possible to replace FEA with AI and machine learning, to avoid the 
time-consuming simulation of heat transfer and thermal dynamics?

Adjust design 
parameters



Design and performance prediction of TES

Determine system 
parameters and 

energy input

Proposed new approach

AI-driven 
simulation 
framework

Determine system 
output profile over 

charging/discharging

System Design

Operation Optimization

Objective:
• Aim to achieve 1000-10000× acceleration in performance prediction compared to traditional FE 

simulations

• Facilitate innovative TES designs through parameter exploration, potentially identifying non-
intuitive configurations

• Enable real-time control for TES systems integrated with various energy sources, enhancing grid 
stability and energy efficiency



Model Development

1. High-Fidelity Training Data Generation
Training data of the AI model will be created through high-fidelity FE simulations, by capturing the complex physics of 
heat transfer and thermal dynamics of the TES system by systematically varying key parameters under four categories:

• Operating Conditions: Temperature ranges (25-
600°C), heating/cooling rates (0.5-10°C/min), and 
operational cycles

• Storage Media Properties: Thermal conductivity, 
specific heat, density

• Geometric Configurations: Module dimensions, 
aspect ratios, and design of heat exchanger 
layouts

• Heat Transfer Fluid (HTF) Parameters: Fluid 
types, flow rates (0.1-10 kg/s), inlet temperatures, 
and pressure conditions

Thermal conductivity Specific heat Density

0.2 to 1 (every 0.1 W/m*K)
300 to 1000 (every 100 
J/kg.K)

400 to 1000 (every 200 
kg/m3)

1 to 2 (every 0.2 W/m*K)
1000 to 2000 (every 200 
J/kg.K)

1000 to 4000 (every 500 
kg/m3)

2 to 10 (every 1 W/m*K)



Model Development

2. Machine Learning Model Development
Implement and compare multiple advanced ML architectures specifically designed for sequential data 
processing.

• Hybrid RBF-RNN Models: Combining Recurrent Neural Network layers for processing sequential data 
and Radial Basis Function Networks for learning complex nonlinear relationship within the time series 
data

• Long Short-Term Memory (LSTM) Networks: To capture long-term dependencies in thermal 
charging/discharging cycles

• Gated Recurrent Units (GRUs): For efficient modeling of medium-term thermal dynamics with reduced 
computational complexity



Model Development
3. Model Validation and Performance Evaluation
Compare ML-predicted thermal outputs with FE simulation results under identical input conditions to assess 
prediction accuracy

Case study example (training parameter: input temperature profile) 
RBF-RNN model LSTM model GRU model

CPU time RBF-RNN LSTM GRU FE models

Training 122 s 58 s 60 s N/A

Testing 0.29 s 0.11 s 0.21 s N/A

Total 122.29 s 58.11 s 60.21 s 20 min

Computational 
cost:



Summary and Future plan

• In progress of establishing the complete dataset for ML training from 
high-fidelity FE simulations

• Expand the simulation from heat transfer to fluid dynamic to cover 
broader application scenarios

• Leverage the advantages of LSTM, GRU and hybrid RBF-RNN models 
for improved prediction performance

• Test the control capability (demand response) of the AL framework by 
inversely predicting required energy input under desired energy 
demand profile



Q&A?
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